Praveen998 commited on
Commit
4600657
·
1 Parent(s): 230626d

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. app.py +75 -125
app.py CHANGED
@@ -26,128 +26,98 @@ def on_btn_click():
26
 
27
 
28
  def main():
29
- st.title(" All Graphs")
30
  (
31
  col1,
32
  col2,
33
  ) = st.columns(2)
34
  with col1:
35
- st.line_chart(
36
- pd.DataFrame(
37
- {
38
- "Apple": yf.download("AAPL", start="2023-01-01", end="2023-07-31")[
39
- "Adj Close"
40
- ],
41
- "Google": yf.download(
42
- "GOOGL", start="2023-01-01", end="2023-07-31"
43
- )["Adj Close"],
44
- "Microsoft": yf.download(
45
- "MSFT", start="2023-01-01", end="2023-07-31"
46
- )["Adj Close"],
47
- }
48
- )
49
- )
50
  with col2:
51
- data = pd.DataFrame(
52
- {"X": [1, 2, 3, 4, 5], "Y1": [10, 16, 8, 14, 12], "Y2": [5, 8, 3, 6, 7]}
53
- )
54
- st.area_chart(data)
55
- st.plotly_chart(
56
- ff.create_distplot(
57
- [np.random.randn(200) - 2, np.random.randn(200), np.random.randn(200) + 2],
58
- ["Negative Shift", "Normal", "Positive Shift"],
59
- bin_size=[0.1, 0.25, 0.5],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60
  ),
61
- use_container_width=True,
 
62
  )
63
- source = vds.cars()
64
- chart = {
65
- "mark": "point",
66
- "encoding": {
67
- "x": {"field": "Horsepower", "type": "quantitative"},
68
- "y": {"field": "Miles_per_Gallon", "type": "quantitative"},
69
- "color": {"field": "Origin", "type": "nominal"},
70
- "shape": {"field": "Origin", "type": "nominal"},
71
- },
72
- }
73
- tab1, tab2 = st.tabs(["Streamlit theme (default)", "Vega-Lite native theme"])
74
- with tab1:
75
- st.vega_lite_chart(source, chart, theme="streamlit", use_container_width=True)
76
- with tab2:
77
- st.vega_lite_chart(source, chart, theme=None, use_container_width=True)
78
- st.altair_chart(
79
- alt.Chart(
80
- pd.DataFrame(
81
- {
82
- "x": np.random.rand(50),
83
- "y": np.random.rand(50),
84
- "size": np.random.randint(10, 100, 50),
85
- "color": np.random.rand(50),
86
- }
87
- )
88
- )
89
- .mark_circle()
90
- .encode(
91
- x="x",
92
- y="y",
93
- size="size",
94
- color="color",
95
- tooltip=["x", "y", "size", "color"],
96
- )
97
- .properties(width=600, height=400),
98
- use_container_width=True,
99
  )
100
- st.bar_chart(
101
- pd.DataFrame(np.random.randn(20, 3), columns=["Apple", "Banana", "Cherry"])
 
 
 
 
 
102
  )
103
- st.pydeck_chart(
104
- pdk.Deck(
105
- map_style=None,
106
- initial_view_state=pdk.ViewState(
107
- latitude=37.76, longitude=-122.4, zoom=11, pitch=50
108
- ),
109
- layers=[
110
- pdk.Layer(
111
- "HexagonLayer",
112
- data=pd.DataFrame(
113
- np.random.randn(1000, 2) / [50, 50] + [37.76, -122.4],
114
- columns=["lat", "lon"],
115
- ),
116
- get_position="[lon, lat]",
117
- radius=200,
118
- elevation_scale=4,
119
- elevation_range=[0, 1000],
120
- pickable=True,
121
- extruded=True,
122
- ),
123
- pdk.Layer(
124
- "ScatterplotLayer",
125
- data=pd.DataFrame(
126
- np.random.randn(1000, 2) / [50, 50] + [37.76, -122.4],
127
- columns=["lat", "lon"],
128
- ),
129
- get_position="[lon, lat]",
130
- get_color="[200, 30, 0, 160]",
131
- get_radius=200,
132
- ),
133
- ],
134
- )
135
  )
136
- import datetime
137
-
138
- np.random.seed(1)
139
- programmers = ["Alex", "Nicole", "Sara", "Etienne", "Chelsea", "Jody", "Marianne"]
140
- base = datetime.datetime.today()
141
- dates = base - np.arange(180) * datetime.timedelta(days=1)
142
- z = np.random.poisson(size=(len(programmers), len(dates)))
143
- fig = go.Figure(data=go.Heatmap(z=z, x=dates, y=programmers, colorscale="Viridis"))
144
- fig.update_layout(title="GitHub commits per day", xaxis_nticks=36)
145
  st.plotly_chart(fig)
146
  (
147
  col1,
148
  col2,
149
  ) = st.columns(2)
150
  with col1:
 
 
 
 
 
 
 
 
151
  df = px.data.gapminder().query("year == 2007").query("continent == 'Americas'")
152
  fig = px.pie(
153
  df,
@@ -159,26 +129,6 @@ def main():
159
  )
160
  fig.update_traces(textposition="inside", textinfo="percent+label")
161
  st.plotly_chart(fig)
162
- with col2:
163
- fig = go.Figure(
164
- go.Sunburst(
165
- labels=[
166
- "Eve",
167
- "Cain",
168
- "Seth",
169
- "Enos",
170
- "Noam",
171
- "Abel",
172
- "Awan",
173
- "Enoch",
174
- "Azura",
175
- ],
176
- parents=["", "Eve", "Eve", "Seth", "Seth", "Eve", "Eve", "Awan", "Eve"],
177
- values=[10, 14, 12, 10, 2, 6, 6, 4, 4],
178
- )
179
- )
180
- fig.update_layout(margin=dict(t=0, l=0, r=0, b=0))
181
- st.plotly_chart(fig)
182
 
183
 
184
  if __name__ == "__main__":
 
26
 
27
 
28
  def main():
29
+ st.title(" Corona Dashboard")
30
  (
31
  col1,
32
  col2,
33
  ) = st.columns(2)
34
  with col1:
35
+ option = st.selectbox(" San Francisco", [" San Francisco"])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
  with col2:
37
+ option = st.selectbox(" Monthly / Weekly", [" Monthly ", " Weekly"])
38
+ if st.checkbox(" Show raw data"):
39
+ st.write("Checkbox checked!")
40
+ if st.button(" Visualize"):
41
+ st.write("Button clicked!")
42
+ st.subheader(" Global Data")
43
+ df = pd.read_csv(
44
+ "https://raw.githubusercontent.com/plotly/datasets/master/volcano_db.csv",
45
+ encoding="iso-8859-1",
46
+ )
47
+ freq = df
48
+ freq = freq.Country.value_counts().reset_index().rename(columns={"count": "x"})
49
+ df_v = pd.read_csv(
50
+ "https://raw.githubusercontent.com/plotly/datasets/master/volcano.csv"
51
+ )
52
+ fig = make_subplots(
53
+ rows=2,
54
+ cols=2,
55
+ column_widths=[0.6, 0.4],
56
+ row_heights=[0.4, 0.6],
57
+ specs=[
58
+ [{"type": "scattergeo", "rowspan": 2}, {"type": "bar"}],
59
+ [None, {"type": "surface"}],
60
+ ],
61
+ )
62
+ fig.add_trace(
63
+ go.Scattergeo(
64
+ lat=df["Latitude"],
65
+ lon=df["Longitude"],
66
+ mode="markers",
67
+ hoverinfo="text",
68
+ showlegend=False,
69
+ marker=dict(color="crimson", size=4, opacity=0.8),
70
  ),
71
+ row=1,
72
+ col=1,
73
  )
74
+ fig.add_trace(
75
+ go.Bar(
76
+ x=freq["x"][0:10],
77
+ y=freq["Country"][0:10],
78
+ marker=dict(color="crimson"),
79
+ showlegend=False,
80
+ ),
81
+ row=1,
82
+ col=2,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83
  )
84
+ fig.add_trace(go.Surface(z=df_v.values.tolist(), showscale=False), row=2, col=2)
85
+ fig.update_geos(
86
+ projection_type="orthographic",
87
+ landcolor="white",
88
+ oceancolor="MidnightBlue",
89
+ showocean=True,
90
+ lakecolor="LightBlue",
91
  )
92
+ fig.update_xaxes(tickangle=45)
93
+ fig.update_layout(
94
+ template="plotly_dark",
95
+ margin=dict(r=10, t=25, b=40, l=60),
96
+ annotations=[
97
+ dict(
98
+ text="Source: NOAA",
99
+ showarrow=False,
100
+ xref="paper",
101
+ yref="paper",
102
+ x=0,
103
+ y=0,
104
+ )
105
+ ],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
106
  )
 
 
 
 
 
 
 
 
 
107
  st.plotly_chart(fig)
108
  (
109
  col1,
110
  col2,
111
  ) = st.columns(2)
112
  with col1:
113
+ st.table(
114
+ {
115
+ "Country": ["USA", "Canada", "UK", "Australia"],
116
+ "Population (millions)": [331, 38, 66, 25],
117
+ "GDP (trillion USD)": [22.675, 1.843, 2.855, 1.488],
118
+ }
119
+ )
120
+ with col2:
121
  df = px.data.gapminder().query("year == 2007").query("continent == 'Americas'")
122
  fig = px.pie(
123
  df,
 
129
  )
130
  fig.update_traces(textposition="inside", textinfo="percent+label")
131
  st.plotly_chart(fig)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
132
 
133
 
134
  if __name__ == "__main__":