Spaces:
Runtime error
Runtime error
File size: 15,726 Bytes
1a4dc5b 9f2724b 1a4dc5b 8811dd9 1a4dc5b 8811dd9 1a4dc5b 8811dd9 1a4dc5b 8811dd9 9f2724b 8811dd9 9f2724b 8811dd9 9f2724b 8811dd9 9f2724b 8811dd9 1a4dc5b 8811dd9 1a4dc5b 8811dd9 c357672 1a4dc5b c357672 1a4dc5b 8811dd9 1a4dc5b 9f2724b fab6b22 9f2724b fab6b22 9f2724b 1a4dc5b 9f2724b 8811dd9 1a4dc5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
import gradio as gr
import os
import sys
from base64 import b64encode
import numpy as np
import torch
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel
from matplotlib import pyplot as plt
from pathlib import Path
from PIL import Image
from torch import autocast
from torchvision import transforms as tfms
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer, logging
import os
import cv2
import torchvision.transforms as T
torch.manual_seed(1)
logging.set_verbosity_error()
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
# Load the autoencoder
vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder='vae')
# Load tokenizer and text encoder to tokenize and encode the text
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
# Unet model for generating latents
unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder='unet')
# Noise scheduler
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
# Move everything to GPU
vae = vae.to(torch_device)
text_encoder = text_encoder.to(torch_device)
unet = unet.to(torch_device)
def get_output_embeds(input_embeddings):
# CLIP's text model uses causal mask, so we prepare it here:
bsz, seq_len = input_embeddings.shape[:2]
causal_attention_mask = text_encoder.text_model._build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype)
# Getting the output embeddings involves calling the model with passing output_hidden_states=True
# so that it doesn't just return the pooled final predictions:
encoder_outputs = text_encoder.text_model.encoder(
inputs_embeds=input_embeddings,
attention_mask=None, # We aren't using an attention mask so that can be None
causal_attention_mask=causal_attention_mask.to(torch_device),
output_attentions=None,
output_hidden_states=True, # We want the output embs not the final output
return_dict=None,
)
# We're interested in the output hidden state only
output = encoder_outputs[0]
# There is a final layer norm we need to pass these through
output = text_encoder.text_model.final_layer_norm(output)
# And now they're ready!
return output
# Prep Scheduler
def set_timesteps(scheduler, num_inference_steps):
scheduler.set_timesteps(num_inference_steps)
scheduler.timesteps = scheduler.timesteps.to(torch.float32) # minor fix to ensure MPS compatibility, fixed in diffusers PR 3925
style_files = ['learned_embeds_animal_toys.bin','learned_embeds_fftstyle.bin',
'learned_embeds_midjourney_style.bin','learned_embeds_oil_style.bin','learned_embeds_space-style.bin']
seed_values = [8,16,50,80,128]
height = 512 # default height of Stable Diffusion
width = 512 # default width of Stable Diffusion
num_inference_steps = 5 # Number of denoising steps
guidance_scale = 7.5 # Scale for classifier-free guidance
num_styles = len(style_files)
def get_style_embeddings(style_file):
style_embed = torch.load(style_file)
style_name = list(style_embed.keys())[0]
return style_embed[style_name]
def get_EOS_pos_in_prompt(prompt):
return len(prompt.split())+1
import torch.nn.functional as F
from torchvision.transforms import ToTensor
def pil_to_latent(input_im):
# Single image -> single latent in a batch (so size 1, 4, 64, 64)
with torch.no_grad():
latent = vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(torch_device)*2-1) # Note scaling
return 0.18215 * latent.latent_dist.sample()
def latents_to_pil(latents):
# bath of latents -> list of images
latents = (1 / 0.18215) * latents
with torch.no_grad():
image = vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
images = (image * 255).round().astype("uint8")
pil_images = [Image.fromarray(image) for image in images]
return pil_images
def additional_guidance(latents, scheduler, noise_pred, t, sigma, custom_loss_fn, custom_loss_scale):
#### ADDITIONAL GUIDANCE ###
# Requires grad on the latents
latents = latents.detach().requires_grad_()
# Get the predicted x0:
latents_x0 = latents - sigma * noise_pred
# Decode to image space
denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1)
# Calculate loss
loss = custom_loss_fn(denoised_images) * custom_loss_scale
# Get gradient
cond_grad = torch.autograd.grad(loss, latents, allow_unused=False)[0]
# Modify the latents based on this gradient
latents = latents.detach() - cond_grad * sigma**2
return latents, loss
def generate_with_embs(text_embeddings, max_length, random_seed, loss_fn = None, custom_loss_scale=1.0):
height = 512 # default height of Stable Diffusion
width = 512 # default width of Stable Diffusion
num_inference_steps = 5 # Number of denoising steps
guidance_scale = 7.5 # Scale for classifier-free guidance
generator = torch.manual_seed(random_seed) # Seed generator to create the inital latent noise
batch_size = 1
uncond_input = tokenizer(
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
)
with torch.no_grad():
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
# Prep Scheduler
set_timesteps(scheduler, num_inference_steps)
# Prep latents
latents = torch.randn(
(batch_size, unet.in_channels, height // 8, width // 8),
generator=generator,
)
latents = latents.to(torch_device)
latents = latents * scheduler.init_noise_sigma
# Loop
for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2)
sigma = scheduler.sigmas[i]
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
with torch.no_grad():
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
# perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
if loss_fn is not None:
if i%2 == 0:
latents, custom_loss = additional_guidance(latents, scheduler, noise_pred, t, sigma, loss_fn, custom_loss_scale)
print(i, 'loss:', custom_loss.item())
# compute the previous noisy sample x_t -> x_t-1
latents = scheduler.step(noise_pred, t, latents).prev_sample
return latents_to_pil(latents)[0]
def generate_image_custom_style(prompt, style_num=None, random_seed=41, custom_loss_fn = None, custom_loss_scale=1.0):
eos_pos = get_EOS_pos_in_prompt(prompt)
style_token_embedding = None
if style_num:
style_token_embedding = get_style_embeddings(style_files[style_num])
# tokenize
text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
max_length = text_input.input_ids.shape[-1]
input_ids = text_input.input_ids.to(torch_device)
# get token embeddings
token_emb_layer = text_encoder.text_model.embeddings.token_embedding
token_embeddings = token_emb_layer(input_ids)
# Append style token towards the end of the sentence embeddings
if style_token_embedding is not None:
token_embeddings[-1, eos_pos, :] = style_token_embedding
# combine with pos embs
pos_emb_layer = text_encoder.text_model.embeddings.position_embedding
position_ids = text_encoder.text_model.embeddings.position_ids[:, :77]
position_embeddings = pos_emb_layer(position_ids)
input_embeddings = token_embeddings + position_embeddings
# Feed through to get final output embs
modified_output_embeddings = get_output_embeds(input_embeddings)
# And generate an image with this:
generated_image = generate_with_embs(modified_output_embeddings, max_length, random_seed, custom_loss_fn, custom_loss_scale)
return generated_image
def show_images(images_list):
# Let's visualize the four channels of this latent representation:
fig, axs = plt.subplots(1, len(images_list), figsize=(16, 4))
for c in range(len(images_list)):
axs[c].imshow(images_list[c])
plt.show()
def brilliance_loss(image, target_brilliance=10):
# Calculate the standard deviation of color channels
std_dev = torch.std(image, dim=(2, 3))
# Calculate the mean standard deviation across the batch
mean_std_dev = torch.mean(std_dev)
# Calculate the loss as the absolute difference from the target brilliance.
loss = torch.abs(mean_std_dev - target_brilliance)
return loss
import numpy as np
from PIL import Image
import torch
from scipy.stats import wasserstein_distance
def exposure_loss(image, target_exposure = 3):
# Calculate the brightness (exposure) of the image.
image_brightness = torch.mean(image)
# Calculate the loss as the absolute difference from the target exposure.
loss = torch.abs(image_brightness - target_exposure)
return loss
def color_diversity_loss(images):
# Calculate color diversity by measuring the variance of color channels (R, G, B).
color_variance = torch.var(images, dim=(2, 3), keepdim=True)
# Sum the color variances for each channel to get the total color diversity.
total_color_diversity = torch.sum(color_variance, dim=1)
return total_color_diversity
def sharpness_loss(images):
# Apply the Laplacian filter to the images to measure sharpness.
laplacian_filter = torch.Tensor([[-1, -1, -1],
[-1, 8, -1],
[-1, -1, -1]]).view(1, 1, 3, 3).to(images.device)
# Expand the filter to match the number of channels in the input image.
laplacian_filter = laplacian_filter.expand(-1, images.shape[1], -1, -1)
# Apply the convolution operation.
laplacian = torch.abs(F.conv2d(images, laplacian_filter))
# Calculate sharpness as the negative of the Laplacian variance.
sharpness = torch.var(laplacian)
return sharpness
def display_images_in_rows(images_with_titles, titles):
num_images = len(images_with_titles)
rows = 5 # Display 5 rows always
columns = 1 if num_images == 5 else 2 # Use 1 column if there are 5 images, otherwise 2 columns
fig, axes = plt.subplots(rows, columns + 1, figsize=(15, 5 * rows)) # Add an extra column for titles
for r in range(rows):
# Add the title on the extreme left in the middle of each picture
axes[r, 0].text(0.5, 0.5, titles[r], ha='center', va='center')
axes[r, 0].axis('off')
# Add "Without Loss" label above the first column and "With Loss" label above the second column (if applicable)
if columns == 2:
axes[r, 1].set_title("Without Loss", pad=10)
axes[r, 2].set_title("With Loss", pad=10)
for c in range(1, columns + 1):
index = r * columns + c - 1
if index < num_images:
image, _ = images_with_titles[index]
axes[r, c].imshow(image)
axes[r, c].axis('off')
return fig
# plt.show()
def image_generator(prompt="cat", loss_function=None):
images_without_loss = []
images_with_loss = []
for i in range(num_styles):
generated_img = generate_image_custom_style(prompt, style_num=i, random_seed=seed_values[i], custom_loss_fn=None)
images_without_loss.append(generated_img)
if loss_function:
if loss_function == "Exposure":
generated_img = generate_image_custom_style(prompt, style_num=i, random_seed=seed_values[i], custom_loss_fn=exposure_loss)
elif loss_function == "Color Diversity":
generated_img = generate_image_custom_style(prompt, style_num=i, random_seed=seed_values[i], custom_loss_fn=color_diversity_loss)
elif loss_function == "Sharpness":
generated_img = generate_image_custom_style(prompt, style_num=i, random_seed=seed_values[i], custom_loss_fn=sharpness_loss)
elif loss_function == "Brilliance":
generated_img = generate_image_custom_style(prompt, style_num=i, random_seed=seed_values[i], custom_loss_fn=brilliance_loss)
images_with_loss.append(generated_img)
generated_sd_images = []
titles = ["animal toy", "fft style", "mid journey", "oil style", "Space style"]
for i in range(len(titles)):
generated_sd_images.append((images_without_loss[i], titles[i]))
if images_with_loss != []:
generated_sd_images.append((images_with_loss[i], titles[i]))
return display_images_in_rows(generated_sd_images, titles)
# Create a wrapper function for image_generator()
def image_generator_wrapper(prompt="dog", selected_loss="None"):
return image_generator(prompt, selected_loss)
icon_html = '<i class="fas fa-chart-bar"></i>'
title = f"""
<div style="background-color: #f5f1f2; padding: 10px; display: flex; align-items: center;">
{icon_html} <span style="margin-left: 10px;">Image Generation using Stable Diffusion</span>
</div>
"""
description = f"""
<div style="background-color: #f1f1f5; padding: 10px; display: flex; align-items: center;">
{icon_html}
<span style="margin-left: 10px;">
<p><strong>Embedding New Styles Into Stable Diffusion</strong></p>
<p>Following are some Losses tried</p>
<ul>
<li>exposure : It helps control the overall exposure of generated images. It ensures that the contrast of the generated images align with the desired aesthetic, preventing overexposure or underexposure</li>
<li>Brilliance: Brilliance loss is a loss function that emphasizes the brilliance or luminance of specific image components, such as highlights. It can be used to highlight or enhance certain aspects of the generated artwork, adding a touch of brilliance or radiance to the final image.</li>
<li>color diversity: Color diversity loss encourages the model to produce images with a wider range of colors and hues. It helps create visually diverse and vibrant artworks by minimizing color repetition and promoting a rich color palette in the generated images</li>
<li>sharpness: Sharpness loss is used to enhance the level of detail and clarity in generated images. It encourages the model to produce crisp and well-defined visual elements, leading to sharper and more realistic results.</li>
</ul>
</span>
</div>
"""
demo = gr.Interface(image_generator_wrapper,
inputs=[gr.Textbox(label="Enter prompt for generating Image", type="text", value="A ballerina cat dancing in space"),
gr.Radio(["None", "Exposure", "Color Diversity", "Sharpness", "Brilliance"], value="None", label="Select Loss")],
outputs=gr.Plot(label="Generated Images"),
title=title,
description=description)
demo.launch() |