Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Commit 
							
							·
						
						9f2724b
	
1
								Parent(s):
							
							8811dd9
								
Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | @@ -92,14 +92,7 @@ def get_EOS_pos_in_prompt(prompt): | |
| 92 |  | 
| 93 |  | 
| 94 | 
             
            import torch.nn.functional as F
         | 
| 95 | 
            -
             | 
| 96 | 
            -
            def gradient_loss(images):
         | 
| 97 | 
            -
                # Compute gradient magnitude using Sobel filters.
         | 
| 98 | 
            -
                gradient_x = F.conv2d(images, torch.Tensor([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]).view(1, 1, 3, 3).to(images.device))
         | 
| 99 | 
            -
                gradient_y = F.conv2d(images, torch.Tensor([[-1, -2, -1], [0, 0, 0], [1, 2, 1]]).view(1, 1, 3, 3).to(images.device))
         | 
| 100 | 
            -
                gradient_magnitude = torch.sqrt(gradient_x**2 + gradient_y**2)
         | 
| 101 | 
            -
                return gradient_magnitude.mean()
         | 
| 102 | 
            -
            """
         | 
| 103 |  | 
| 104 | 
             
            from torchvision.transforms import ToTensor
         | 
| 105 | 
             
            def pil_to_latent(input_im):
         | 
| @@ -317,13 +310,13 @@ def image_generator(prompt="cat", loss_function=None): | |
| 317 | 
             
                    images_without_loss.append(generated_img)
         | 
| 318 |  | 
| 319 | 
             
                    if loss_function:
         | 
| 320 | 
            -
                        if loss_function == " | 
| 321 | 
             
                            generated_img = generate_image_custom_style(prompt, style_num=i, random_seed=seed_values[i], custom_loss_fn=exposure_loss)
         | 
| 322 | 
            -
                        elif loss_function == " | 
| 323 | 
             
                            generated_img = generate_image_custom_style(prompt, style_num=i, random_seed=seed_values[i], custom_loss_fn=color_diversity_loss)
         | 
| 324 | 
            -
                        elif loss_function == " | 
| 325 | 
             
                            generated_img = generate_image_custom_style(prompt, style_num=i, random_seed=seed_values[i], custom_loss_fn=sharpness_loss)
         | 
| 326 | 
            -
                        elif loss_function == " | 
| 327 | 
             
                            generated_img = generate_image_custom_style(prompt, style_num=i, random_seed=seed_values[i], custom_loss_fn=brilliance_loss)
         | 
| 328 | 
             
                        images_with_loss.append(generated_img)
         | 
| 329 |  | 
| @@ -341,12 +334,39 @@ def image_generator(prompt="cat", loss_function=None): | |
| 341 | 
             
            def image_generator_wrapper(prompt="dog", selected_loss="None"):
         | 
| 342 | 
             
                return image_generator(prompt, selected_loss)
         | 
| 343 |  | 
| 344 | 
            -
             | 
| 345 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 346 |  | 
| 347 | 
             
            demo = gr.Interface(image_generator_wrapper,
         | 
| 348 | 
            -
                                inputs=[gr.Textbox(label="Enter prompt for  | 
| 349 | 
            -
                                        gr.Radio(["None", " | 
| 350 | 
             
                                outputs=gr.Plot(label="Generated Images"),
         | 
| 351 | 
             
                                title=title,
         | 
| 352 | 
             
                                description=description)
         | 
|  | |
| 92 |  | 
| 93 |  | 
| 94 | 
             
            import torch.nn.functional as F
         | 
| 95 | 
            +
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 96 |  | 
| 97 | 
             
            from torchvision.transforms import ToTensor
         | 
| 98 | 
             
            def pil_to_latent(input_im):
         | 
|  | |
| 310 | 
             
                    images_without_loss.append(generated_img)
         | 
| 311 |  | 
| 312 | 
             
                    if loss_function:
         | 
| 313 | 
            +
                        if loss_function == "Exposure":
         | 
| 314 | 
             
                            generated_img = generate_image_custom_style(prompt, style_num=i, random_seed=seed_values[i], custom_loss_fn=exposure_loss)
         | 
| 315 | 
            +
                        elif loss_function == "Color Diversity":
         | 
| 316 | 
             
                            generated_img = generate_image_custom_style(prompt, style_num=i, random_seed=seed_values[i], custom_loss_fn=color_diversity_loss)
         | 
| 317 | 
            +
                        elif loss_function == "Sharpness":
         | 
| 318 | 
             
                            generated_img = generate_image_custom_style(prompt, style_num=i, random_seed=seed_values[i], custom_loss_fn=sharpness_loss)
         | 
| 319 | 
            +
                        elif loss_function == "Brilliance":
         | 
| 320 | 
             
                            generated_img = generate_image_custom_style(prompt, style_num=i, random_seed=seed_values[i], custom_loss_fn=brilliance_loss)
         | 
| 321 | 
             
                        images_with_loss.append(generated_img)
         | 
| 322 |  | 
|  | |
| 334 | 
             
            def image_generator_wrapper(prompt="dog", selected_loss="None"):
         | 
| 335 | 
             
                return image_generator(prompt, selected_loss)
         | 
| 336 |  | 
| 337 | 
            +
            icon_html = '<i class="fas fa-chart-bar"></i>'
         | 
| 338 | 
            +
            title_with_icon = f"""
         | 
| 339 | 
            +
            <div style="background-color: #f5f1f2; padding: 10px; display: flex; align-items: center;">
         | 
| 340 | 
            +
                {icon_html} <span style="margin-left: 10px;">Image Generation using Stable Diffusion</span>
         | 
| 341 | 
            +
            </div>
         | 
| 342 | 
            +
            """
         | 
| 343 | 
            +
            description_with_icon = f"""
         | 
| 344 | 
            +
            <div style="background-color: #f1f1f5; padding: 10px; display: flex; align-items: center;">
         | 
| 345 | 
            +
                {icon_html}
         | 
| 346 | 
            +
                <span style="margin-left: 10px;">
         | 
| 347 | 
            +
                    <p><strong>Embedding New Styles Into Stable Diffusion</strong></p>
         | 
| 348 | 
            +
                    <p><strong>Following are the concepts trained on</strong></p>
         | 
| 349 | 
            +
                    <ul>
         | 
| 350 | 
            +
                        <li>animal-toy</li>
         | 
| 351 | 
            +
                        <li>fft</li>
         | 
| 352 | 
            +
                        <li>midjourney</li>
         | 
| 353 | 
            +
                        <li>oil style</li>
         | 
| 354 | 
            +
                        <li>space style</li>
         | 
| 355 | 
            +
                    </ul>
         | 
| 356 | 
            +
                    <p>Following are some Losses tried</p>
         | 
| 357 | 
            +
                    <ul>
         | 
| 358 | 
            +
                        <li>exposure : It helps control the overall exposure of generated images. It ensures that the contrast of the generated images align with the desired aesthetic, preventing overexposure or underexposure</li>
         | 
| 359 | 
            +
                        <li>Brilliance:  Brilliance loss is a loss function that emphasizes the brilliance or luminance of specific image components, such as highlights. It can be used to highlight or enhance certain aspects of the generated artwork, adding a touch of brilliance or radiance to the final image.</li>
         | 
| 360 | 
            +
                        <li>color diversity: Color diversity loss encourages the model to produce images with a wider range of colors and hues. It helps create visually diverse and vibrant artworks by minimizing color repetition and promoting a rich color palette in the generated images</li>
         | 
| 361 | 
            +
                        <li>sharpness: Sharpness loss is used to enhance the level of detail and clarity in generated images. It encourages the model to produce crisp and well-defined visual elements, leading to sharper and more realistic results.</li>
         | 
| 362 | 
            +
                    </ul>
         | 
| 363 | 
            +
                </span>
         | 
| 364 | 
            +
            </div>
         | 
| 365 | 
            +
            """
         | 
| 366 |  | 
| 367 | 
             
            demo = gr.Interface(image_generator_wrapper,
         | 
| 368 | 
            +
                                inputs=[gr.Textbox(label="Enter prompt for generating Image", type="text", value="A ballerina cat dancing in space"),
         | 
| 369 | 
            +
                                        gr.Radio(["None", "Exposure", "Color Diversity", "Sharpness", "Brilliance"], value="None", label="Select Loss")],
         | 
| 370 | 
             
                                outputs=gr.Plot(label="Generated Images"),
         | 
| 371 | 
             
                                title=title,
         | 
| 372 | 
             
                                description=description)
         |