PrarthanaTS commited on
Commit
9f2724b
·
1 Parent(s): 8811dd9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +36 -16
app.py CHANGED
@@ -92,14 +92,7 @@ def get_EOS_pos_in_prompt(prompt):
92
 
93
 
94
  import torch.nn.functional as F
95
- """
96
- def gradient_loss(images):
97
- # Compute gradient magnitude using Sobel filters.
98
- gradient_x = F.conv2d(images, torch.Tensor([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]).view(1, 1, 3, 3).to(images.device))
99
- gradient_y = F.conv2d(images, torch.Tensor([[-1, -2, -1], [0, 0, 0], [1, 2, 1]]).view(1, 1, 3, 3).to(images.device))
100
- gradient_magnitude = torch.sqrt(gradient_x**2 + gradient_y**2)
101
- return gradient_magnitude.mean()
102
- """
103
 
104
  from torchvision.transforms import ToTensor
105
  def pil_to_latent(input_im):
@@ -317,13 +310,13 @@ def image_generator(prompt="cat", loss_function=None):
317
  images_without_loss.append(generated_img)
318
 
319
  if loss_function:
320
- if loss_function == "exposure_loss":
321
  generated_img = generate_image_custom_style(prompt, style_num=i, random_seed=seed_values[i], custom_loss_fn=exposure_loss)
322
- elif loss_function == "color_diversity_loss":
323
  generated_img = generate_image_custom_style(prompt, style_num=i, random_seed=seed_values[i], custom_loss_fn=color_diversity_loss)
324
- elif loss_function == "sharpness_loss":
325
  generated_img = generate_image_custom_style(prompt, style_num=i, random_seed=seed_values[i], custom_loss_fn=sharpness_loss)
326
- elif loss_function == "brilliance_loss":
327
  generated_img = generate_image_custom_style(prompt, style_num=i, random_seed=seed_values[i], custom_loss_fn=brilliance_loss)
328
  images_with_loss.append(generated_img)
329
 
@@ -341,12 +334,39 @@ def image_generator(prompt="cat", loss_function=None):
341
  def image_generator_wrapper(prompt="dog", selected_loss="None"):
342
  return image_generator(prompt, selected_loss)
343
 
344
- description = 'Stable Diffusion is a generative artificial intelligence (generative AI) model that produces unique photorealistic images from text and image prompts.'
345
- title = 'Image Generation using Stable Diffusion'
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
346
 
347
  demo = gr.Interface(image_generator_wrapper,
348
- inputs=[gr.Textbox(label="Enter prompt for generation", type="text", value="A ballerina cat dancing in space"),
349
- gr.Radio(["None", "exposure_loss", "color_diversity_loss", "sharpness_loss", "brilliance_loss"], value="None", label="Select Loss")],
350
  outputs=gr.Plot(label="Generated Images"),
351
  title=title,
352
  description=description)
 
92
 
93
 
94
  import torch.nn.functional as F
95
+
 
 
 
 
 
 
 
96
 
97
  from torchvision.transforms import ToTensor
98
  def pil_to_latent(input_im):
 
310
  images_without_loss.append(generated_img)
311
 
312
  if loss_function:
313
+ if loss_function == "Exposure":
314
  generated_img = generate_image_custom_style(prompt, style_num=i, random_seed=seed_values[i], custom_loss_fn=exposure_loss)
315
+ elif loss_function == "Color Diversity":
316
  generated_img = generate_image_custom_style(prompt, style_num=i, random_seed=seed_values[i], custom_loss_fn=color_diversity_loss)
317
+ elif loss_function == "Sharpness":
318
  generated_img = generate_image_custom_style(prompt, style_num=i, random_seed=seed_values[i], custom_loss_fn=sharpness_loss)
319
+ elif loss_function == "Brilliance":
320
  generated_img = generate_image_custom_style(prompt, style_num=i, random_seed=seed_values[i], custom_loss_fn=brilliance_loss)
321
  images_with_loss.append(generated_img)
322
 
 
334
  def image_generator_wrapper(prompt="dog", selected_loss="None"):
335
  return image_generator(prompt, selected_loss)
336
 
337
+ icon_html = '<i class="fas fa-chart-bar"></i>'
338
+ title_with_icon = f"""
339
+ <div style="background-color: #f5f1f2; padding: 10px; display: flex; align-items: center;">
340
+ {icon_html} <span style="margin-left: 10px;">Image Generation using Stable Diffusion</span>
341
+ </div>
342
+ """
343
+ description_with_icon = f"""
344
+ <div style="background-color: #f1f1f5; padding: 10px; display: flex; align-items: center;">
345
+ {icon_html}
346
+ <span style="margin-left: 10px;">
347
+ <p><strong>Embedding New Styles Into Stable Diffusion</strong></p>
348
+ <p><strong>Following are the concepts trained on</strong></p>
349
+ <ul>
350
+ <li>animal-toy</li>
351
+ <li>fft</li>
352
+ <li>midjourney</li>
353
+ <li>oil style</li>
354
+ <li>space style</li>
355
+ </ul>
356
+ <p>Following are some Losses tried</p>
357
+ <ul>
358
+ <li>exposure : It helps control the overall exposure of generated images. It ensures that the contrast of the generated images align with the desired aesthetic, preventing overexposure or underexposure</li>
359
+ <li>Brilliance: Brilliance loss is a loss function that emphasizes the brilliance or luminance of specific image components, such as highlights. It can be used to highlight or enhance certain aspects of the generated artwork, adding a touch of brilliance or radiance to the final image.</li>
360
+ <li>color diversity: Color diversity loss encourages the model to produce images with a wider range of colors and hues. It helps create visually diverse and vibrant artworks by minimizing color repetition and promoting a rich color palette in the generated images</li>
361
+ <li>sharpness: Sharpness loss is used to enhance the level of detail and clarity in generated images. It encourages the model to produce crisp and well-defined visual elements, leading to sharper and more realistic results.</li>
362
+ </ul>
363
+ </span>
364
+ </div>
365
+ """
366
 
367
  demo = gr.Interface(image_generator_wrapper,
368
+ inputs=[gr.Textbox(label="Enter prompt for generating Image", type="text", value="A ballerina cat dancing in space"),
369
+ gr.Radio(["None", "Exposure", "Color Diversity", "Sharpness", "Brilliance"], value="None", label="Select Loss")],
370
  outputs=gr.Plot(label="Generated Images"),
371
  title=title,
372
  description=description)