Spaces:
Runtime error
Runtime error
Commit
·
1a4dc5b
1
Parent(s):
af36cc8
Update app.py
Browse files
app.py
CHANGED
|
@@ -0,0 +1,320 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
+
import sys
|
| 4 |
+
from base64 import b64encode
|
| 5 |
+
|
| 6 |
+
import numpy as np
|
| 7 |
+
import torch
|
| 8 |
+
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel
|
| 9 |
+
|
| 10 |
+
from matplotlib import pyplot as plt
|
| 11 |
+
from pathlib import Path
|
| 12 |
+
from PIL import Image
|
| 13 |
+
from torch import autocast
|
| 14 |
+
from torchvision import transforms as tfms
|
| 15 |
+
from tqdm.auto import tqdm
|
| 16 |
+
from transformers import CLIPTextModel, CLIPTokenizer, logging
|
| 17 |
+
import os
|
| 18 |
+
import cv2
|
| 19 |
+
import torchvision.transforms as T
|
| 20 |
+
|
| 21 |
+
torch.manual_seed(1)
|
| 22 |
+
logging.set_verbosity_error()
|
| 23 |
+
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
# Load the autoencoder
|
| 27 |
+
vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder='vae')
|
| 28 |
+
|
| 29 |
+
# Load tokenizer and text encoder to tokenize and encode the text
|
| 30 |
+
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
|
| 31 |
+
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
|
| 32 |
+
|
| 33 |
+
# Unet model for generating latents
|
| 34 |
+
unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder='unet')
|
| 35 |
+
|
| 36 |
+
# Noise scheduler
|
| 37 |
+
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
|
| 38 |
+
|
| 39 |
+
# Move everything to GPU
|
| 40 |
+
vae = vae.to(torch_device)
|
| 41 |
+
text_encoder = text_encoder.to(torch_device)
|
| 42 |
+
unet = unet.to(torch_device)
|
| 43 |
+
|
| 44 |
+
def get_output_embeds(input_embeddings):
|
| 45 |
+
# CLIP's text model uses causal mask, so we prepare it here:
|
| 46 |
+
bsz, seq_len = input_embeddings.shape[:2]
|
| 47 |
+
causal_attention_mask = text_encoder.text_model._build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype)
|
| 48 |
+
|
| 49 |
+
# Getting the output embeddings involves calling the model with passing output_hidden_states=True
|
| 50 |
+
# so that it doesn't just return the pooled final predictions:
|
| 51 |
+
encoder_outputs = text_encoder.text_model.encoder(
|
| 52 |
+
inputs_embeds=input_embeddings,
|
| 53 |
+
attention_mask=None, # We aren't using an attention mask so that can be None
|
| 54 |
+
causal_attention_mask=causal_attention_mask.to(torch_device),
|
| 55 |
+
output_attentions=None,
|
| 56 |
+
output_hidden_states=True, # We want the output embs not the final output
|
| 57 |
+
return_dict=None,
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
# We're interested in the output hidden state only
|
| 61 |
+
output = encoder_outputs[0]
|
| 62 |
+
|
| 63 |
+
# There is a final layer norm we need to pass these through
|
| 64 |
+
output = text_encoder.text_model.final_layer_norm(output)
|
| 65 |
+
|
| 66 |
+
# And now they're ready!
|
| 67 |
+
return output
|
| 68 |
+
|
| 69 |
+
# Prep Scheduler
|
| 70 |
+
def set_timesteps(scheduler, num_inference_steps):
|
| 71 |
+
scheduler.set_timesteps(num_inference_steps)
|
| 72 |
+
scheduler.timesteps = scheduler.timesteps.to(torch.float32) # minor fix to ensure MPS compatibility, fixed in diffusers PR 3925
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
style_files = ['learned_embeds_animal_toys.bin','learned_embeds_fftstyle.bin',
|
| 76 |
+
'learned_embeds_midjourney_style.bin','learned_embeds_oil_style.bin','learned_embeds_space-style.bin']
|
| 77 |
+
|
| 78 |
+
seed_values = [8,16,50,80,128]
|
| 79 |
+
height = 512 # default height of Stable Diffusion
|
| 80 |
+
width = 512 # default width of Stable Diffusion
|
| 81 |
+
num_inference_steps = 5 # Number of denoising steps
|
| 82 |
+
guidance_scale = 7.5 # Scale for classifier-free guidance
|
| 83 |
+
num_styles = len(style_files)
|
| 84 |
+
|
| 85 |
+
def get_style_embeddings(style_file):
|
| 86 |
+
style_embed = torch.load(style_file)
|
| 87 |
+
style_name = list(style_embed.keys())[0]
|
| 88 |
+
return style_embed[style_name]
|
| 89 |
+
|
| 90 |
+
def get_EOS_pos_in_prompt(prompt):
|
| 91 |
+
return len(prompt.split())+1
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
import torch.nn.functional as F
|
| 95 |
+
"""
|
| 96 |
+
def gradient_loss(images):
|
| 97 |
+
# Compute gradient magnitude using Sobel filters.
|
| 98 |
+
gradient_x = F.conv2d(images, torch.Tensor([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]).view(1, 1, 3, 3).to(images.device))
|
| 99 |
+
gradient_y = F.conv2d(images, torch.Tensor([[-1, -2, -1], [0, 0, 0], [1, 2, 1]]).view(1, 1, 3, 3).to(images.device))
|
| 100 |
+
gradient_magnitude = torch.sqrt(gradient_x**2 + gradient_y**2)
|
| 101 |
+
return gradient_magnitude.mean()
|
| 102 |
+
"""
|
| 103 |
+
|
| 104 |
+
from torchvision.transforms import ToTensor
|
| 105 |
+
def pil_to_latent(input_im):
|
| 106 |
+
# Single image -> single latent in a batch (so size 1, 4, 64, 64)
|
| 107 |
+
with torch.no_grad():
|
| 108 |
+
latent = vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(torch_device)*2-1) # Note scaling
|
| 109 |
+
return 0.18215 * latent.latent_dist.sample()
|
| 110 |
+
|
| 111 |
+
def latents_to_pil(latents):
|
| 112 |
+
# bath of latents -> list of images
|
| 113 |
+
latents = (1 / 0.18215) * latents
|
| 114 |
+
with torch.no_grad():
|
| 115 |
+
image = vae.decode(latents).sample
|
| 116 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
| 117 |
+
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
|
| 118 |
+
images = (image * 255).round().astype("uint8")
|
| 119 |
+
pil_images = [Image.fromarray(image) for image in images]
|
| 120 |
+
return pil_images
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
def additional_guidance(latents, scheduler, noise_pred, t, sigma, custom_loss_fn, custom_loss_scale):
|
| 124 |
+
#### ADDITIONAL GUIDANCE ###
|
| 125 |
+
# Requires grad on the latents
|
| 126 |
+
latents = latents.detach().requires_grad_()
|
| 127 |
+
|
| 128 |
+
# Get the predicted x0:
|
| 129 |
+
latents_x0 = latents - sigma * noise_pred
|
| 130 |
+
|
| 131 |
+
# Decode to image space
|
| 132 |
+
denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1)
|
| 133 |
+
|
| 134 |
+
# Calculate loss
|
| 135 |
+
loss = custom_loss_fn(denoised_images) * custom_loss_scale
|
| 136 |
+
|
| 137 |
+
# Get gradient
|
| 138 |
+
cond_grad = torch.autograd.grad(loss, latents, allow_unused=False)[0]
|
| 139 |
+
|
| 140 |
+
# Modify the latents based on this gradient
|
| 141 |
+
latents = latents.detach() - cond_grad * sigma**2
|
| 142 |
+
return latents, loss
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
def generate_with_embs(text_embeddings, max_length, random_seed, loss_fn = None, custom_loss_scale=1.0):
|
| 146 |
+
|
| 147 |
+
height = 512 # default height of Stable Diffusion
|
| 148 |
+
width = 512 # default width of Stable Diffusion
|
| 149 |
+
num_inference_steps = 5 # Number of denoising steps
|
| 150 |
+
guidance_scale = 7.5 # Scale for classifier-free guidance
|
| 151 |
+
|
| 152 |
+
generator = torch.manual_seed(random_seed) # Seed generator to create the inital latent noise
|
| 153 |
+
batch_size = 1
|
| 154 |
+
|
| 155 |
+
uncond_input = tokenizer(
|
| 156 |
+
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
|
| 157 |
+
)
|
| 158 |
+
with torch.no_grad():
|
| 159 |
+
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
|
| 160 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
| 161 |
+
|
| 162 |
+
# Prep Scheduler
|
| 163 |
+
set_timesteps(scheduler, num_inference_steps)
|
| 164 |
+
|
| 165 |
+
# Prep latents
|
| 166 |
+
latents = torch.randn(
|
| 167 |
+
(batch_size, unet.in_channels, height // 8, width // 8),
|
| 168 |
+
generator=generator,
|
| 169 |
+
)
|
| 170 |
+
latents = latents.to(torch_device)
|
| 171 |
+
latents = latents * scheduler.init_noise_sigma
|
| 172 |
+
|
| 173 |
+
# Loop
|
| 174 |
+
for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
|
| 175 |
+
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
|
| 176 |
+
latent_model_input = torch.cat([latents] * 2)
|
| 177 |
+
sigma = scheduler.sigmas[i]
|
| 178 |
+
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
|
| 179 |
+
|
| 180 |
+
# predict the noise residual
|
| 181 |
+
with torch.no_grad():
|
| 182 |
+
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
|
| 183 |
+
|
| 184 |
+
# perform guidance
|
| 185 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 186 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 187 |
+
if loss_fn is not None:
|
| 188 |
+
if i%2 == 0:
|
| 189 |
+
latents, custom_loss = additional_guidance(latents, scheduler, noise_pred, t, sigma, loss_fn, custom_loss_scale)
|
| 190 |
+
print(i, 'loss:', custom_loss.item())
|
| 191 |
+
|
| 192 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 193 |
+
latents = scheduler.step(noise_pred, t, latents).prev_sample
|
| 194 |
+
|
| 195 |
+
return latents_to_pil(latents)[0]
|
| 196 |
+
|
| 197 |
+
def generate_image_custom_style(prompt, style_num=None, random_seed=41, custom_loss_fn = None, custom_loss_scale=1.0):
|
| 198 |
+
eos_pos = get_EOS_pos_in_prompt(prompt)
|
| 199 |
+
|
| 200 |
+
style_token_embedding = None
|
| 201 |
+
if style_num:
|
| 202 |
+
style_token_embedding = get_style_embeddings(style_files[style_num])
|
| 203 |
+
|
| 204 |
+
# tokenize
|
| 205 |
+
text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
|
| 206 |
+
max_length = text_input.input_ids.shape[-1]
|
| 207 |
+
input_ids = text_input.input_ids.to(torch_device)
|
| 208 |
+
|
| 209 |
+
# get token embeddings
|
| 210 |
+
token_emb_layer = text_encoder.text_model.embeddings.token_embedding
|
| 211 |
+
token_embeddings = token_emb_layer(input_ids)
|
| 212 |
+
|
| 213 |
+
# Append style token towards the end of the sentence embeddings
|
| 214 |
+
if style_token_embedding is not None:
|
| 215 |
+
token_embeddings[-1, eos_pos, :] = style_token_embedding
|
| 216 |
+
|
| 217 |
+
# combine with pos embs
|
| 218 |
+
pos_emb_layer = text_encoder.text_model.embeddings.position_embedding
|
| 219 |
+
position_ids = text_encoder.text_model.embeddings.position_ids[:, :77]
|
| 220 |
+
position_embeddings = pos_emb_layer(position_ids)
|
| 221 |
+
input_embeddings = token_embeddings + position_embeddings
|
| 222 |
+
|
| 223 |
+
# Feed through to get final output embs
|
| 224 |
+
modified_output_embeddings = get_output_embeds(input_embeddings)
|
| 225 |
+
|
| 226 |
+
# And generate an image with this:
|
| 227 |
+
generated_image = generate_with_embs(modified_output_embeddings, max_length, random_seed, custom_loss_fn, custom_loss_scale)
|
| 228 |
+
return generated_image
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
def show_images(images_list):
|
| 232 |
+
# Let's visualize the four channels of this latent representation:
|
| 233 |
+
fig, axs = plt.subplots(1, len(images_list), figsize=(16, 4))
|
| 234 |
+
for c in range(len(images_list)):
|
| 235 |
+
axs[c].imshow(images_list[c])
|
| 236 |
+
plt.show()
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
def invert_loss(gen_image):
|
| 240 |
+
inverter = T.RandomInvert(p=1.0)
|
| 241 |
+
inverted_img = inverter(gen_image)
|
| 242 |
+
#loss = torch.abs(gen_image - inverted_img).sum()
|
| 243 |
+
loss = torch.nn.functional.mse_loss(gen_image[:,0], gen_image[:,2]) + torch.nn.functional.mse_loss(gen_image[:,2], gen_image[:,1]) + torch.nn.functional.mse_loss(gen_image[:,0], gen_image[:,1])
|
| 244 |
+
return loss
|
| 245 |
+
|
| 246 |
+
def brilliance_loss(image, target_brilliance=10):
|
| 247 |
+
# Calculate the standard deviation of color channels
|
| 248 |
+
std_dev = torch.std(image, dim=(2, 3))
|
| 249 |
+
# Calculate the mean standard deviation across the batch
|
| 250 |
+
mean_std_dev = torch.mean(std_dev)
|
| 251 |
+
# Calculate the loss as the absolute difference from the target brilliance.
|
| 252 |
+
loss = torch.abs(mean_std_dev - target_brilliance)
|
| 253 |
+
return loss
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
def display_images_in_rows(images_with_titles, titles):
|
| 257 |
+
num_images = len(images_with_titles)
|
| 258 |
+
rows = 5 # Display 5 rows always
|
| 259 |
+
columns = 1 if num_images == 5 else 2 # Use 1 column if there are 5 images, otherwise 2 columns
|
| 260 |
+
fig, axes = plt.subplots(rows, columns + 1, figsize=(15, 5 * rows)) # Add an extra column for titles
|
| 261 |
+
|
| 262 |
+
for r in range(rows):
|
| 263 |
+
# Add the title on the extreme left in the middle of each picture
|
| 264 |
+
axes[r, 0].text(0.5, 0.5, titles[r], ha='center', va='center')
|
| 265 |
+
axes[r, 0].axis('off')
|
| 266 |
+
|
| 267 |
+
# Add "Without Loss" label above the first column and "With Loss" label above the second column (if applicable)
|
| 268 |
+
if columns == 2:
|
| 269 |
+
axes[r, 1].set_title("Without Loss", pad=10)
|
| 270 |
+
axes[r, 2].set_title("With Loss", pad=10)
|
| 271 |
+
|
| 272 |
+
for c in range(1, columns + 1):
|
| 273 |
+
index = r * columns + c - 1
|
| 274 |
+
if index < num_images:
|
| 275 |
+
image, _ = images_with_titles[index]
|
| 276 |
+
axes[r, c].imshow(image)
|
| 277 |
+
axes[r, c].axis('off')
|
| 278 |
+
|
| 279 |
+
return fig
|
| 280 |
+
# plt.show()
|
| 281 |
+
|
| 282 |
+
|
| 283 |
+
def image_generator(prompt = "dog", loss_function=None):
|
| 284 |
+
images_without_loss = []
|
| 285 |
+
images_with_loss = []
|
| 286 |
+
|
| 287 |
+
for i in range(num_styles):
|
| 288 |
+
generated_img = generate_image_custom_style(prompt,style_num = i,random_seed = seed_values[i],custom_loss_fn = None)
|
| 289 |
+
images_without_loss.append(generated_img)
|
| 290 |
+
if loss_function:
|
| 291 |
+
generated_img = generate_image_custom_style(prompt,style_num = i,random_seed = seed_values[i],custom_loss_fn = loss_function)
|
| 292 |
+
images_with_loss.append(generated_img)
|
| 293 |
+
|
| 294 |
+
generated_sd_images = []
|
| 295 |
+
titles = ["animal toy","fft style","mid journey","oil style","Space style"]
|
| 296 |
+
|
| 297 |
+
for i in range(len(titles)):
|
| 298 |
+
generated_sd_images.append((images_without_loss[i], titles[i]))
|
| 299 |
+
if images_with_loss != []:
|
| 300 |
+
generated_sd_images.append((images_with_loss[i], titles[i]))
|
| 301 |
+
|
| 302 |
+
return display_images_in_rows(generated_sd_images, titles)
|
| 303 |
+
|
| 304 |
+
# Create a wrapper function for show_misclassified_images()
|
| 305 |
+
def image_generator_wrapper(prompt = "dog", loss_function=None):
|
| 306 |
+
if loss_function == "Yes":
|
| 307 |
+
loss_function = brilliance_loss
|
| 308 |
+
else:
|
| 309 |
+
loss_function = None
|
| 310 |
+
|
| 311 |
+
return image_generator(prompt, loss_function)
|
| 312 |
+
|
| 313 |
+
description = 'Stable Diffusion is a generative artificial intelligence (generative AI) model that produces unique photorealistic images from text and image prompts.'
|
| 314 |
+
title = 'Image Generation using Stable Diffusion'
|
| 315 |
+
|
| 316 |
+
demo = gr.Interface(image_generator_wrapper,
|
| 317 |
+
inputs=[gr.Textbox(label="Enter prompt for generation", type="text", value="astronaut riding a cycle"),
|
| 318 |
+
gr.Radio(["Yes", "No"], value="No" , label="Apply Contrast Loss")],
|
| 319 |
+
outputs=gr.Plot(label="Generated Images"), title = "Stable Diffusion", description=description)
|
| 320 |
+
demo.launch()
|