Spaces:
Sleeping
Sleeping
File size: 7,097 Bytes
fe36699 6dee028 924bf1b 7fa1089 cf10f44 85f7f2f 61157d2 c6d3428 2270bc7 92757b3 9212ca3 fecb931 9212ca3 bdab5b0 85f7f2f 24060f0 61157d2 a5bd9c0 fe36699 84b4386 4468b37 1ed3cce 84b4386 2270bc7 fecb931 7c0523d c8d88b2 7d978f8 5c2668d fecb931 be1a3b5 85f7f2f be1a3b5 2319f8b 3a5682e be1a3b5 85f7f2f 24060f0 cccc448 8504e03 2d5af5b 5848dd4 81c492e e01694c 4784d20 e01694c cbb907e 85f7f2f 7bccdcb 7f8ac14 fecb931 be1a3b5 2270bc7 a6dfbcd e474e6a 2646d8d 053606e b1fedda 6e7cfd2 b1fedda dd8ef37 9961d18 2af8ac7 a5f4249 81646ae a5f4249 053606e a5f4249 053606e a6dfbcd bdab5b0 a6dfbcd bdab5b0 a6dfbcd cf10f44 20218cb cf10f44 2646d8d cf10f44 fe36699 cf10f44 b1af2d3 cf10f44 01ba052 cf10f44 fe36699 cf10f44 61157d2 20218cb 61157d2 fe36699 12af8e8 cf10f44 20218cb fecb931 fd0dd62 2a7ef32 b5dee8e 2a7ef32 b5dee8e 2a7ef32 fe36699 d968fd4 9aee54a 49d0de6 d968fd4 5e8d963 d968fd4 61157d2 fe36699 5ae6760 fe36699 cf10f44 b26c7d3 3837c7b b26c7d3 fecb931 592dcd0 fecb931 b26c7d3 5f799ae b26c7d3 cf10f44 01ba052 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
import gradio as gr
import json
import os
import io
import pdfplumber
import requests
import together
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
import re
import unicodedata
from dotenv import load_dotenv
from flask import jsonify
load_dotenv()
API_URL = "https://e4e5-196-96-202-255.ngrok-free.app"
API_URL_FILES = f"{API_URL}/file"
API_URL_EMBEDDINGS = f"{API_URL}/embeddings"
API_URL_METADATA = f"{API_URL}/metadata"
# FAISS index setup
DIM = 768 # Adjust based on the embedding model
# Set up Together.AI API Key (Replace with your actual key)
assert os.getenv("TOGETHER_API_KEY"), "api key missing"
# Use a sentence transformer for embeddings
#'BAAI/bge-base-en-v1.5'
# embedding_model = SentenceTransformer("BAAI/bge-base-en-v1.5")
# 'togethercomputer/m2-bert-80M-8k-retrieval'
embedding_model = SentenceTransformer(
"togethercomputer/m2-bert-80M-8k-retrieval",
trust_remote_code=True # Allow remote code execution
)
embedding_dim = 768 # Adjust according to model
def store_document_data(PDF_FILE):
print(" Storing document...")
if PDF_FILE:
# Extract text from the PDF
text = extract_text_from_pdf(PDF_FILE)
if not text:
return "Could not extract any text from the PDF."
# Generate and return embedding
embedding = embedding_model.encode([text]).astype(np.float32)
print("Embeddings generated")
print("Embedding shape:", embedding.shape)
print(f"sending to {API_URL_EMBEDDINGS}")
try:
index = faiss.IndexFlatL2(embedding.shape[1])
index.add(embedding) # Add embedding
print(index, index.ntotal)
index_file = "index.bin"
faiss.write_index(index, index_file)
doc_index = index.ntotal - 1
with open(index_file, "rb") as f:
response = requests.post(API_URL_EMBEDDINGS, files={"file": f})
print("sent")
except requests.exceptions.RequestException as e:
return {"error": str(e)}
return doc_index
else:
return "No PDF file provided."
def retrieve_document(query):
print(f"Retrieving document based on:\n{query}")
embeddings_ = requests.get(API_URL_EMBEDDINGS)
metadata_ = requests.get(API_URL_METADATA)
# Check for errors before parsing JSON
if embeddings_.status_code != 200:
print(f"Error fetching embeddings: {embeddings_.status_code} - {embeddings_.text}")
return None
if metadata_.status_code != 200:
print(f"Error fetching metadata: {metadata_.status_code} - {metadata_.text}")
return None
try:
metadata_file = metadata_.json()
print(metadata_file)
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding metadata JSON: {e}")
return None
try:
print(embeddings_.content)
# Convert response content to a byte stream
byte_stream = io.BytesIO(embeddings_.content)
# Load FAISS index from byte stream
index = faiss.deserialize_index(byte_stream.read())
print(f"Successfully loaded FAISS index with {index.ntotal} vectors.")
# Now you can perform retrieval using `index.search()`
# return index
except Exception as e:
print(f"Error loading FAISS index: {e}")
return None
print(index, metadata_file)
# Generate query embedding
query_embedding = embedding_model.encode([query]).astype(np.float32)
# Search for the closest document in FAISS index
_, closest_idx = index.search(query_embedding, 1)
with open(metadata_file, "r") as f:
metadata = [json.loads(line) for line in f]
# Check if a relevant document was found
if closest_idx[0][0] == -1 or str(closest_idx[0][0]) not in metadata:
print("No relevant document found")
return None
# Retrieve the document file path
filename = metadata[str(closest_idx[0][0])]
pdf_file = requests.get(API_URL_FILES, filename)
# Read and return the document content
with open(filename, "r", encoding="utf-8") as f:
return f.read()
def clean_text(text):
"""Cleans extracted text for better processing by the model."""
print("cleaning")
text = unicodedata.normalize("NFKC", text) # Normalize Unicode characters
text = re.sub(r'\s+', ' ', text).strip() # Remove extra spaces and newlines
text = re.sub(r'[^a-zA-Z0-9.,!?;:\\"()\-]', ' ', text) # Keep basic punctuation
text = re.sub(r'(?i)(page\s*\d+)', '', text) # Remove page numbers
return text
def extract_text_from_pdf(pdf_file):
"""Extract and clean text from the uploaded PDF."""
print("extracting")
try:
with pdfplumber.open(pdf_file) as pdf:
text = " ".join(clean_text(text) for page in pdf.pages if (text := page.extract_text()))
return text
except Exception as e:
print(f"Error extracting text: {e}{pdf_file}")
return None
def split_text(text, chunk_size=500):
"""Splits text into smaller chunks for better processing."""
print("splitting")
return [text[i:i+chunk_size] for i in range(0, len(text), chunk_size)]
def chatbot(user_question):
"""Processes the PDF and answers the user's question."""
print("chatbot start")
# retrieve the document relevant to the query
doc = retrieve_document(user_question)
if doc:
print(f"found doc:\n{doc}\n")
# Split into smaller chunks
chunks = split_text(doc)
# Use only the first chunk (to optimize token usage)
prompt = f"Based on this document, answer the question:\n\nDocument:\n{chunks[0]}\n\nQuestion: {user_question}"
print(f"prompt:\n{prompt}")
else:
prompt=user_question
try:
print("asking")
response = together.Completion.create(
model="mistralai/Mistral-7B-Instruct-v0.1",
prompt=prompt,
max_tokens=200,
temperature=0.7,
)
# Return chatbot's response
return response.choices[0].text
except Exception as e:
return f"Error generating response: {e}"
# Send to Together.AI (Mistral-7B)
def helloWorld(text):
return f"{text} : hello world"
# Gradio Interface
iface = gr.TabbedInterface(
[
gr.Interface(
fn=chatbot,
inputs=gr.Textbox(label="Ask a Question"),
outputs=gr.Textbox(label="Answer"),
title="PDF Q&A Chatbot (Powered by Together.AI)",
),
gr.Interface(
fn=helloWorld,
inputs="text",
outputs="text",
),
gr.Interface(
fn=store_document_data,
inputs=[gr.File(label="PDF_FILE")],
outputs=gr.Textbox(label="Answer"),
title="pdf file, metadata, index parsing and storing",
),
]
)
# Launch Gradio app
iface.launch(show_error=True) |