Spaces:
Running
Running
Update app.py
Browse filesupdated to use together ai models instead of huggingface due to login runtime error
app.py
CHANGED
@@ -2,11 +2,9 @@ import gradio as gr
|
|
2 |
import os
|
3 |
import pdfplumber
|
4 |
import together
|
5 |
-
from transformers import pipeline
|
6 |
from sentence_transformers import SentenceTransformer
|
7 |
import faiss
|
8 |
import numpy as np
|
9 |
-
import huggingface_hub as login
|
10 |
import re
|
11 |
import unicodedata
|
12 |
from dotenv import load_dotenv
|
@@ -16,21 +14,11 @@ load_dotenv()
|
|
16 |
# Set up Together.AI API Key (Replace with your actual key)
|
17 |
assert os.getenv("TOGETHER_API_KEY"), "api key missing"
|
18 |
|
19 |
-
#
|
20 |
-
|
21 |
-
|
22 |
-
if api_token:
|
23 |
-
login(token=api_token) # Authenticate with Hugging Face
|
24 |
-
|
25 |
-
|
26 |
-
# Load LLaMA-2 Model
|
27 |
-
llama_pipe = pipeline("text-generation", model="meta-llama/Llama-2-7b-chat-hf")
|
28 |
-
|
29 |
-
# Load Sentence Transformer for embeddings
|
30 |
-
embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
|
31 |
|
32 |
# Initialize FAISS index
|
33 |
-
embedding_dim = 384 # For MiniLM model
|
34 |
index = faiss.IndexFlatL2(embedding_dim)
|
35 |
documents = [] # Store raw text for reference
|
36 |
|
|
|
2 |
import os
|
3 |
import pdfplumber
|
4 |
import together
|
|
|
5 |
from sentence_transformers import SentenceTransformer
|
6 |
import faiss
|
7 |
import numpy as np
|
|
|
8 |
import re
|
9 |
import unicodedata
|
10 |
from dotenv import load_dotenv
|
|
|
14 |
# Set up Together.AI API Key (Replace with your actual key)
|
15 |
assert os.getenv("TOGETHER_API_KEY"), "api key missing"
|
16 |
|
17 |
+
# Use a sentence transformer for embeddings
|
18 |
+
embedding_model = SentenceTransformer("BAAI/bge-base-en-v1.5") # Alternative: 'togethercomputer/m2-bert-80M-8k-retrieval'
|
19 |
+
embedding_dim = 768 # Adjust according to model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
# Initialize FAISS index
|
|
|
22 |
index = faiss.IndexFlatL2(embedding_dim)
|
23 |
documents = [] # Store raw text for reference
|
24 |
|