Penality commited on
Commit
84b4386
·
verified ·
1 Parent(s): 628fe81

Update app.py

Browse files

updated to use together ai models instead of huggingface due to login runtime error

Files changed (1) hide show
  1. app.py +3 -15
app.py CHANGED
@@ -2,11 +2,9 @@ import gradio as gr
2
  import os
3
  import pdfplumber
4
  import together
5
- from transformers import pipeline
6
  from sentence_transformers import SentenceTransformer
7
  import faiss
8
  import numpy as np
9
- import huggingface_hub as login
10
  import re
11
  import unicodedata
12
  from dotenv import load_dotenv
@@ -16,21 +14,11 @@ load_dotenv()
16
  # Set up Together.AI API Key (Replace with your actual key)
17
  assert os.getenv("TOGETHER_API_KEY"), "api key missing"
18
 
19
- # Retrieve the API token from secrets
20
- api_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
21
- print(api_token)
22
- if api_token:
23
- login(token=api_token) # Authenticate with Hugging Face
24
-
25
-
26
- # Load LLaMA-2 Model
27
- llama_pipe = pipeline("text-generation", model="meta-llama/Llama-2-7b-chat-hf")
28
-
29
- # Load Sentence Transformer for embeddings
30
- embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
31
 
32
  # Initialize FAISS index
33
- embedding_dim = 384 # For MiniLM model
34
  index = faiss.IndexFlatL2(embedding_dim)
35
  documents = [] # Store raw text for reference
36
 
 
2
  import os
3
  import pdfplumber
4
  import together
 
5
  from sentence_transformers import SentenceTransformer
6
  import faiss
7
  import numpy as np
 
8
  import re
9
  import unicodedata
10
  from dotenv import load_dotenv
 
14
  # Set up Together.AI API Key (Replace with your actual key)
15
  assert os.getenv("TOGETHER_API_KEY"), "api key missing"
16
 
17
+ # Use a sentence transformer for embeddings
18
+ embedding_model = SentenceTransformer("BAAI/bge-base-en-v1.5") # Alternative: 'togethercomputer/m2-bert-80M-8k-retrieval'
19
+ embedding_dim = 768 # Adjust according to model
 
 
 
 
 
 
 
 
 
20
 
21
  # Initialize FAISS index
 
22
  index = faiss.IndexFlatL2(embedding_dim)
23
  documents = [] # Store raw text for reference
24