Spaces:
Sleeping
Sleeping
Update app.py
Browse filesupdated FAISS indexing and file and metadata storing to avoid keyError: '0'
app.py
CHANGED
@@ -30,58 +30,55 @@ embedding_dim = 768 # Adjust according to model
|
|
30 |
index = faiss.IndexFlatL2(embedding_dim)
|
31 |
documents = [] # Store raw text for reference
|
32 |
|
33 |
-
|
34 |
-
# initialize the variables to store documents
|
35 |
DOCUMENT_DIR = os.path.join(os.path.dirname(__file__), "documents")
|
36 |
-
INDEX_FILE = "faiss_index.
|
37 |
-
METADATA_FILE = "metadata.json"
|
38 |
|
39 |
-
#
|
40 |
os.makedirs(DOCUMENT_DIR, exist_ok=True)
|
41 |
|
42 |
-
#
|
43 |
-
if os.path.exists(INDEX_FILE):
|
44 |
-
|
45 |
-
if stored_embeddings.shape[0] > 0:
|
46 |
-
index.add(stored_embeddings)
|
47 |
|
48 |
-
#
|
49 |
-
if os.path.exists(METADATA_FILE):
|
50 |
with open(METADATA_FILE, "r") as f:
|
51 |
metadata = json.load(f)
|
52 |
else:
|
53 |
metadata = {}
|
54 |
|
55 |
def store_document(text):
|
56 |
-
print("
|
57 |
|
58 |
# Generate a unique filename
|
59 |
-
|
|
|
|
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
# Save document in a file
|
64 |
-
with open(filename, "w") as f:
|
65 |
f.write(text)
|
|
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
# Generate and store embedding
|
70 |
embedding = embedding_model.encode([text]).astype(np.float32)
|
71 |
-
index.add(embedding)
|
|
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
metadata
|
|
|
77 |
with open(METADATA_FILE, "w") as f:
|
78 |
json.dump(metadata, f)
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
print(f"
|
84 |
-
|
85 |
return "Document stored!"
|
86 |
|
87 |
def retrieve_document(query):
|
@@ -90,6 +87,10 @@ def retrieve_document(query):
|
|
90 |
query_embedding = embedding_model.encode([query]).astype(np.float32)
|
91 |
_, closest_idx = index.search(query_embedding, 1)
|
92 |
|
|
|
|
|
|
|
|
|
93 |
if closest_idx[0][0] in metadata: # Ensure a valid match
|
94 |
filename = metadata[str(closest_idx[0][0])]
|
95 |
with open(filename, "r") as f:
|
|
|
30 |
index = faiss.IndexFlatL2(embedding_dim)
|
31 |
documents = [] # Store raw text for reference
|
32 |
|
33 |
+
# Initialize paths
|
|
|
34 |
DOCUMENT_DIR = os.path.join(os.path.dirname(__file__), "documents")
|
35 |
+
INDEX_FILE = "faiss_index.bin" # FAISS index file (binary format)
|
36 |
+
METADATA_FILE = "metadata.json" # Document metadata
|
37 |
|
38 |
+
# Create the documents directory if it doesn’t exist
|
39 |
os.makedirs(DOCUMENT_DIR, exist_ok=True)
|
40 |
|
41 |
+
# Load FAISS index if it exists
|
42 |
+
if os.path.exists(INDEX_FILE):
|
43 |
+
index = faiss.read_index(INDEX_FILE)
|
|
|
|
|
44 |
|
45 |
+
# Load metadata
|
46 |
+
if os.path.exists(METADATA_FILE):
|
47 |
with open(METADATA_FILE, "r") as f:
|
48 |
metadata = json.load(f)
|
49 |
else:
|
50 |
metadata = {}
|
51 |
|
52 |
def store_document(text):
|
53 |
+
print(" Storing document...")
|
54 |
|
55 |
# Generate a unique filename
|
56 |
+
doc_id = len(metadata) + 1
|
57 |
+
filename = os.path.join(DOCUMENT_DIR, f"doc_{doc_id}.txt")
|
58 |
+
print(f"Saving document at: {filename}")
|
59 |
|
60 |
+
# Save document to file
|
61 |
+
with open(filename, "w", encoding="utf-8") as f:
|
|
|
|
|
62 |
f.write(text)
|
63 |
+
print(" Document saved")
|
64 |
|
65 |
+
# Generate and store embedding
|
|
|
|
|
66 |
embedding = embedding_model.encode([text]).astype(np.float32)
|
67 |
+
index.add(embedding) # Add to FAISS index
|
68 |
+
print(" Embeddings generated")
|
69 |
|
70 |
+
# Get FAISS index for the new document
|
71 |
+
doc_index = index.ntotal - 1
|
72 |
+
|
73 |
+
# Update metadata with FAISS index
|
74 |
+
metadata[str(doc_index)] = filename
|
75 |
with open(METADATA_FILE, "w") as f:
|
76 |
json.dump(metadata, f)
|
77 |
|
78 |
+
# Save FAISS index properly
|
79 |
+
faiss.write_index(index, INDEX_FILE)
|
80 |
+
|
81 |
+
print(f" Document stored successfully at: {filename}")
|
|
|
82 |
return "Document stored!"
|
83 |
|
84 |
def retrieve_document(query):
|
|
|
87 |
query_embedding = embedding_model.encode([query]).astype(np.float32)
|
88 |
_, closest_idx = index.search(query_embedding, 1)
|
89 |
|
90 |
+
if not closest_idx or closest_idx[0][0] not in metadata:
|
91 |
+
return "No relevant document found."
|
92 |
+
|
93 |
+
|
94 |
if closest_idx[0][0] in metadata: # Ensure a valid match
|
95 |
filename = metadata[str(closest_idx[0][0])]
|
96 |
with open(filename, "r") as f:
|