Spaces:
Running
Running
File size: 4,068 Bytes
0cfb4a5 d4fba6d 0dec378 de6051a 0dec378 0a67e9a a484b84 d4fba6d 2fc432b 1a52ee5 e3be785 0dec378 d4fba6d 20ffdd2 0dec378 2fc432b 0dec378 e3be785 2fc432b e3be785 0cfb4a5 de6051a e3be785 de6051a 1a52ee5 e3be785 79024bb 2fc432b e3be785 de6051a 2fc432b e3be785 2fc432b e3be785 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
import os
import gradio as gr
import numpy as np
import random
from huggingface_hub import AsyncInferenceClient
from translatepy import Translator
import requests
import re
import asyncio
from PIL import Image
from gradio_client import Client, handle_file
from huggingface_hub import login
from gradio_imageslider import ImageSlider
translator = Translator()
HF_TOKEN = os.environ.get("HF_TOKEN", None)
basemodel = "black-forest-labs/FLUX.1-schnell"
MAX_SEED = np.iinfo(np.int32).max
CSS = "footer { visibility: hidden; }"
JS = "function () { gradioURL = window.location.href; if (!gradioURL.endsWith('?__theme=dark')) { window.location.replace(gradioURL + '?__theme=dark'); } }"
def enable_lora(lora_add):
return basemodel if not lora_add else lora_add
async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
if seed == -1:
seed = random.randint(0, MAX_SEED)
seed = int(seed)
text = str(translator.translate(prompt, 'English')) + "," + lora_word
client = AsyncInferenceClient()
try:
image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
except Exception as e:
raise gr.Error(f"Error in {e}")
return image, seed
async def gen(prompt, lora_add, lora_word, width, height, scales, steps, seed, upscale_factor, process_upscale):
model = enable_lora(lora_add)
image, seed = await generate_image(prompt, model, lora_word, width, height, scales, steps, seed)
image_path = "temp_image.png"
image.save(image_path)
if process_upscale:
upscale_image = get_upscale_finegrain(prompt, image_path, upscale_factor)
else:
upscale_image = image_path
return [image_path, upscale_image]
def get_upscale_finegrain(prompt, img_path, upscale_factor):
client = Client("finegrain/finegrain-image-enhancer")
result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process")
return result[1]
css = """
#col-container{
margin: 0 auto;
max-width: 1024px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# Flux Upscaled")
gr.Markdown("Step 1: Generate image with FLUX schnell; Step 2: UpScale with Finegrain Image-Enhancer")
with gr.Group():
prompt = gr.Textbox(label="Prompt")
with gr.Row():
lora_add = gr.Textbox(label="Add Flux LoRA", info="Copy the HF LoRA model name here", lines=1, placeholder="Please use Warm status model")
lora_word = gr.Textbox(label="Add Flux LoRA Trigger Word", info="Add the Trigger Word", lines=1, value="")
width = gr.Slider(label="Width", minimum=512, maximum=1280, step=8, value=768)
height = gr.Slider(label="Height", minimum=512, maximum=1280, step=8, value=1024)
scales = gr.Slider(label="Guidance", minimum=3.5, maximum=7, step=0.1, value=3.5)
steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=24)
seed = gr.Slider(label="Seeds", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
upscale_factor = gr.Radio(label="UpScale Factor", choices=[2, 3, 4], value=2, scale=2)
process_upscale = gr.Checkbox(label="Process Upscale", value=True)
submit_btn = gr.Button("Submit", scale=1)
output_res = ImageSlider(label="Flux / Upscaled")
submit_btn.click(
fn=lambda: None,
inputs=None,
outputs=[output_res],
queue=False
).then(
fn=gen,
inputs=[prompt, lora_add, lora_word, width, height, scales, steps, seed, upscale_factor, process_upscale],
outputs=[output_res]
) |