File size: 4,068 Bytes
0cfb4a5
d4fba6d
0dec378
 
de6051a
0dec378
0a67e9a
 
a484b84
d4fba6d
2fc432b
 
 
1a52ee5
e3be785
0dec378
d4fba6d
20ffdd2
0dec378
2fc432b
 
0dec378
e3be785
 
 
 
 
2fc432b
e3be785
 
0cfb4a5
 
de6051a
e3be785
 
 
 
de6051a
1a52ee5
e3be785
 
79024bb
2fc432b
 
 
e3be785
 
 
 
 
 
 
 
de6051a
2fc432b
 
 
 
 
e3be785
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fc432b
e3be785
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import os
import gradio as gr
import numpy as np
import random
from huggingface_hub import AsyncInferenceClient
from translatepy import Translator
import requests
import re
import asyncio
from PIL import Image
from gradio_client import Client, handle_file
from huggingface_hub import login
from gradio_imageslider import ImageSlider


translator = Translator()
HF_TOKEN = os.environ.get("HF_TOKEN", None)
basemodel = "black-forest-labs/FLUX.1-schnell"
MAX_SEED = np.iinfo(np.int32).max
CSS = "footer { visibility: hidden; }"
JS = "function () { gradioURL = window.location.href; if (!gradioURL.endsWith('?__theme=dark')) { window.location.replace(gradioURL + '?__theme=dark'); } }"


def enable_lora(lora_add): 
    return basemodel if not lora_add else lora_add


async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
    if seed == -1: 
        seed = random.randint(0, MAX_SEED)
    seed = int(seed)
    text = str(translator.translate(prompt, 'English')) + "," + lora_word
    client = AsyncInferenceClient()
    try: 
        image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
    except Exception as e: 
        raise gr.Error(f"Error in {e}")
    return image, seed


async def gen(prompt, lora_add, lora_word, width, height, scales, steps, seed, upscale_factor, process_upscale):
    model = enable_lora(lora_add)
    image, seed = await generate_image(prompt, model, lora_word, width, height, scales, steps, seed)
    image_path = "temp_image.png"
    image.save(image_path)
    
    if process_upscale:
        upscale_image = get_upscale_finegrain(prompt, image_path, upscale_factor)
    else:
        upscale_image = image_path
    
    return [image_path, upscale_image]


def get_upscale_finegrain(prompt, img_path, upscale_factor):
    client = Client("finegrain/finegrain-image-enhancer")
    result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process")
    return result[1]


css = """
#col-container{
    margin: 0 auto;
    max-width: 1024px;
}
"""


with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("# Flux Upscaled")
        gr.Markdown("Step 1: Generate image with FLUX schnell; Step 2: UpScale with Finegrain Image-Enhancer")
        with gr.Group():
            prompt = gr.Textbox(label="Prompt")
            with gr.Row():
                lora_add = gr.Textbox(label="Add Flux LoRA", info="Copy the HF LoRA model name here", lines=1, placeholder="Please use Warm status model")
                lora_word = gr.Textbox(label="Add Flux LoRA Trigger Word", info="Add the Trigger Word", lines=1, value="")
                width = gr.Slider(label="Width", minimum=512, maximum=1280, step=8, value=768)
                height = gr.Slider(label="Height", minimum=512, maximum=1280, step=8, value=1024)
                scales = gr.Slider(label="Guidance", minimum=3.5, maximum=7, step=0.1, value=3.5)
                steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=24)
                seed = gr.Slider(label="Seeds", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
                upscale_factor = gr.Radio(label="UpScale Factor", choices=[2, 3, 4], value=2, scale=2)
                process_upscale = gr.Checkbox(label="Process Upscale", value=True)
                submit_btn = gr.Button("Submit", scale=1)
            output_res = ImageSlider(label="Flux / Upscaled")

        submit_btn.click(
            fn=lambda: None,
            inputs=None,
            outputs=[output_res],
            queue=False
        ).then(
            fn=gen,
            inputs=[prompt, lora_add, lora_word, width, height, scales, steps, seed, upscale_factor, process_upscale],
            outputs=[output_res]
        )