Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -12,6 +12,7 @@ from gradio_client import Client, handle_file
|
|
| 12 |
from huggingface_hub import login
|
| 13 |
from gradio_imageslider import ImageSlider
|
| 14 |
|
|
|
|
| 15 |
translator = Translator()
|
| 16 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
| 17 |
basemodel = "black-forest-labs/FLUX.1-schnell"
|
|
@@ -19,44 +20,78 @@ MAX_SEED = np.iinfo(np.int32).max
|
|
| 19 |
CSS = "footer { visibility: hidden; }"
|
| 20 |
JS = "function () { gradioURL = window.location.href; if (!gradioURL.endsWith('?__theme=dark')) { window.location.replace(gradioURL + '?__theme=dark'); } }"
|
| 21 |
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
|
| 24 |
-
if seed == -1:
|
|
|
|
| 25 |
seed = int(seed)
|
| 26 |
text = str(translator.translate(prompt, 'English')) + "," + lora_word
|
| 27 |
client = AsyncInferenceClient()
|
| 28 |
-
try:
|
| 29 |
-
|
|
|
|
|
|
|
| 30 |
return image, seed
|
| 31 |
|
| 32 |
-
|
|
|
|
| 33 |
model = enable_lora(lora_add)
|
| 34 |
image, seed = await generate_image(prompt, model, lora_word, width, height, scales, steps, seed)
|
| 35 |
image_path = "temp_image.png"
|
| 36 |
image.save(image_path)
|
| 37 |
-
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
def get_upscale_finegrain(prompt, img_path, upscale_factor):
|
| 41 |
client = Client("finegrain/finegrain-image-enhancer")
|
| 42 |
result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process")
|
| 43 |
return result[1]
|
| 44 |
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
upscale_factor = gr.Radio(label="UpScale Factor", choices=[2, 3, 4], value=2, scale=2)
|
| 61 |
-
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
from huggingface_hub import login
|
| 13 |
from gradio_imageslider import ImageSlider
|
| 14 |
|
| 15 |
+
|
| 16 |
translator = Translator()
|
| 17 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
| 18 |
basemodel = "black-forest-labs/FLUX.1-schnell"
|
|
|
|
| 20 |
CSS = "footer { visibility: hidden; }"
|
| 21 |
JS = "function () { gradioURL = window.location.href; if (!gradioURL.endsWith('?__theme=dark')) { window.location.replace(gradioURL + '?__theme=dark'); } }"
|
| 22 |
|
| 23 |
+
|
| 24 |
+
def enable_lora(lora_add):
|
| 25 |
+
return basemodel if not lora_add else lora_add
|
| 26 |
+
|
| 27 |
+
|
| 28 |
async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
|
| 29 |
+
if seed == -1:
|
| 30 |
+
seed = random.randint(0, MAX_SEED)
|
| 31 |
seed = int(seed)
|
| 32 |
text = str(translator.translate(prompt, 'English')) + "," + lora_word
|
| 33 |
client = AsyncInferenceClient()
|
| 34 |
+
try:
|
| 35 |
+
image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
|
| 36 |
+
except Exception as e:
|
| 37 |
+
raise gr.Error(f"Error in {e}")
|
| 38 |
return image, seed
|
| 39 |
|
| 40 |
+
|
| 41 |
+
async def gen(prompt, lora_add, lora_word, width, height, scales, steps, seed, upscale_factor, process_upscale):
|
| 42 |
model = enable_lora(lora_add)
|
| 43 |
image, seed = await generate_image(prompt, model, lora_word, width, height, scales, steps, seed)
|
| 44 |
image_path = "temp_image.png"
|
| 45 |
image.save(image_path)
|
| 46 |
+
|
| 47 |
+
if process_upscale:
|
| 48 |
+
upscale_image = get_upscale_finegrain(prompt, image_path, upscale_factor)
|
| 49 |
+
else:
|
| 50 |
+
upscale_image = image_path
|
| 51 |
+
|
| 52 |
+
return [image_path, upscale_image]
|
| 53 |
+
|
| 54 |
|
| 55 |
def get_upscale_finegrain(prompt, img_path, upscale_factor):
|
| 56 |
client = Client("finegrain/finegrain-image-enhancer")
|
| 57 |
result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process")
|
| 58 |
return result[1]
|
| 59 |
|
| 60 |
+
|
| 61 |
+
css = """
|
| 62 |
+
#col-container{
|
| 63 |
+
margin: 0 auto;
|
| 64 |
+
max-width: 1024px;
|
| 65 |
+
}
|
| 66 |
+
"""
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
with gr.Blocks(css=css) as demo:
|
| 70 |
+
with gr.Column(elem_id="col-container"):
|
| 71 |
+
gr.Markdown("# Flux Upscaled")
|
| 72 |
+
gr.Markdown("Step 1: Generate image with FLUX schnell; Step 2: UpScale with Finegrain Image-Enhancer")
|
| 73 |
+
with gr.Group():
|
| 74 |
+
prompt = gr.Textbox(label="Prompt")
|
| 75 |
+
with gr.Row():
|
| 76 |
+
lora_add = gr.Textbox(label="Add Flux LoRA", info="Copy the HF LoRA model name here", lines=1, placeholder="Please use Warm status model")
|
| 77 |
+
lora_word = gr.Textbox(label="Add Flux LoRA Trigger Word", info="Add the Trigger Word", lines=1, value="")
|
| 78 |
+
width = gr.Slider(label="Width", minimum=512, maximum=1280, step=8, value=768)
|
| 79 |
+
height = gr.Slider(label="Height", minimum=512, maximum=1280, step=8, value=1024)
|
| 80 |
+
scales = gr.Slider(label="Guidance", minimum=3.5, maximum=7, step=0.1, value=3.5)
|
| 81 |
+
steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=24)
|
| 82 |
+
seed = gr.Slider(label="Seeds", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
|
| 83 |
upscale_factor = gr.Radio(label="UpScale Factor", choices=[2, 3, 4], value=2, scale=2)
|
| 84 |
+
process_upscale = gr.Checkbox(label="Process Upscale", value=True)
|
| 85 |
+
submit_btn = gr.Button("Submit", scale=1)
|
| 86 |
+
output_res = ImageSlider(label="Flux / Upscaled")
|
| 87 |
+
|
| 88 |
+
submit_btn.click(
|
| 89 |
+
fn=lambda: None,
|
| 90 |
+
inputs=None,
|
| 91 |
+
outputs=[output_res],
|
| 92 |
+
queue=False
|
| 93 |
+
).then(
|
| 94 |
+
fn=gen,
|
| 95 |
+
inputs=[prompt, lora_add, lora_word, width, height, scales, steps, seed, upscale_factor, process_upscale],
|
| 96 |
+
outputs=[output_res]
|
| 97 |
+
)
|