Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,16 +1,18 @@
|
|
| 1 |
-
import os
|
| 2 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
import numpy as np
|
| 4 |
import random
|
| 5 |
-
from huggingface_hub import AsyncInferenceClient
|
| 6 |
from translatepy import Translator
|
| 7 |
import requests
|
| 8 |
import re
|
| 9 |
import asyncio
|
| 10 |
-
|
|
|
|
| 11 |
|
| 12 |
translator = Translator()
|
| 13 |
-
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
| 14 |
basemodel = "black-forest-labs/FLUX.1-dev"
|
| 15 |
MAX_SEED = np.iinfo(np.int32).max
|
| 16 |
|
|
@@ -33,40 +35,12 @@ def enable_lora(lora_add):
|
|
| 33 |
else:
|
| 34 |
return lora_add
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
async def generate_image(
|
| 39 |
-
prompt:str,
|
| 40 |
-
model:str,
|
| 41 |
-
lora_word:str,
|
| 42 |
-
width:int=768,
|
| 43 |
-
height:int=1024,
|
| 44 |
-
scales:float=3.5,
|
| 45 |
-
steps:int=24,
|
| 46 |
-
seed:int=-1):
|
| 47 |
-
|
| 48 |
-
if seed == -1:
|
| 49 |
-
seed = random.randint(0, MAX_SEED)
|
| 50 |
-
seed = int(seed)
|
| 51 |
-
print(f'prompt:{prompt}')
|
| 52 |
-
|
| 53 |
-
text = str(translator.translate(prompt, 'English')) + "," + lora_word
|
| 54 |
-
|
| 55 |
-
try:
|
| 56 |
-
image = await client.text_to_image(
|
| 57 |
-
prompt=text,
|
| 58 |
-
height=height,
|
| 59 |
-
width=width,
|
| 60 |
-
guidance_scale=scales,
|
| 61 |
-
num_inference_steps=steps,
|
| 62 |
-
model=model,
|
| 63 |
-
)
|
| 64 |
-
except Exception as e:
|
| 65 |
-
raise gr.Error(f"Error in {e}")
|
| 66 |
-
|
| 67 |
-
return image, seed
|
| 68 |
|
| 69 |
def get_upscale_finegrain(prompt, img_path, upscale_factor):
|
|
|
|
|
|
|
| 70 |
client = Client("finegrain/finegrain-image-enhancer")
|
| 71 |
result = client.predict(
|
| 72 |
input_image=handle_file(img_path),
|
|
@@ -99,6 +73,30 @@ async def upscale_image(image, upscale_factor):
|
|
| 99 |
|
| 100 |
return result
|
| 101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
async def gen(
|
| 103 |
prompt:str,
|
| 104 |
lora_add:str="XLabs-AI/flux-RealismLora",
|
|
@@ -108,7 +106,7 @@ async def gen(
|
|
| 108 |
scales:float=3.5,
|
| 109 |
steps:int=24,
|
| 110 |
seed:int=-1,
|
| 111 |
-
upscale_factor:int=
|
| 112 |
):
|
| 113 |
model = enable_lora(lora_add)
|
| 114 |
image, seed = await generate_image(prompt,model,lora_word,width,height,scales,steps,seed)
|
|
@@ -127,78 +125,11 @@ with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo:
|
|
| 127 |
sendBtn = gr.Button(scale=1, variant='primary')
|
| 128 |
with gr.Accordion("Opciones avanzadas", open=True):
|
| 129 |
with gr.Column(scale=1):
|
| 130 |
-
width = gr.Slider(
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
)
|
| 137 |
-
|
| 138 |
-
label="Alto",
|
| 139 |
-
minimum=512,
|
| 140 |
-
maximum=1280,
|
| 141 |
-
step=8,
|
| 142 |
-
value=1024,
|
| 143 |
-
)
|
| 144 |
-
scales = gr.Slider(
|
| 145 |
-
label="Guía",
|
| 146 |
-
minimum=3.5,
|
| 147 |
-
maximum=7,
|
| 148 |
-
step=0.1,
|
| 149 |
-
value=3.5,
|
| 150 |
-
)
|
| 151 |
-
steps = gr.Slider(
|
| 152 |
-
label="Pasos",
|
| 153 |
-
minimum=1,
|
| 154 |
-
maximum=100,
|
| 155 |
-
step=1,
|
| 156 |
-
value=24,
|
| 157 |
-
)
|
| 158 |
-
seed = gr.Slider(
|
| 159 |
-
label="Semillas",
|
| 160 |
-
minimum=-1,
|
| 161 |
-
maximum=MAX_SEED,
|
| 162 |
-
step=1,
|
| 163 |
-
value=-1,
|
| 164 |
-
)
|
| 165 |
-
lora_add = gr.Textbox(
|
| 166 |
-
label="Agregar Flux LoRA",
|
| 167 |
-
info="Modelo de LoRA a agregar",
|
| 168 |
-
lines=1,
|
| 169 |
-
value="XLabs-AI/flux-RealismLora",
|
| 170 |
-
)
|
| 171 |
-
lora_word = gr.Textbox(
|
| 172 |
-
label="Palabra clave de LoRA",
|
| 173 |
-
info="Palabra clave para activar el modelo de LoRA",
|
| 174 |
-
lines=1,
|
| 175 |
-
value="",
|
| 176 |
-
)
|
| 177 |
-
upscale_factor = gr.Radio(
|
| 178 |
-
label="Factor de escalado",
|
| 179 |
-
choices=[2, 3, 4],
|
| 180 |
-
value=2,
|
| 181 |
-
)
|
| 182 |
-
|
| 183 |
-
gr.on(
|
| 184 |
-
triggers=[
|
| 185 |
-
prompt.submit,
|
| 186 |
-
sendBtn.click,
|
| 187 |
-
],
|
| 188 |
-
fn=gen,
|
| 189 |
-
inputs=[
|
| 190 |
-
prompt,
|
| 191 |
-
lora_add,
|
| 192 |
-
lora_word,
|
| 193 |
-
width,
|
| 194 |
-
height,
|
| 195 |
-
scales,
|
| 196 |
-
steps,
|
| 197 |
-
seed,
|
| 198 |
-
upscale_factor
|
| 199 |
-
],
|
| 200 |
-
outputs=[img, seed]
|
| 201 |
-
)
|
| 202 |
-
|
| 203 |
-
if __name__ == "__main__":
|
| 204 |
-
demo.queue(api_open=False).launch(show_api=False, share=False)
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
+
from gradio_client import Client, handle_file
|
| 4 |
+
from huggingface_hub import login
|
| 5 |
+
from PIL import Image
|
| 6 |
import numpy as np
|
| 7 |
import random
|
|
|
|
| 8 |
from translatepy import Translator
|
| 9 |
import requests
|
| 10 |
import re
|
| 11 |
import asyncio
|
| 12 |
+
|
| 13 |
+
login(token=os.environ.get("HF_TOKEN", None), username=os.environ.get("HF_USERNAME", None))
|
| 14 |
|
| 15 |
translator = Translator()
|
|
|
|
| 16 |
basemodel = "black-forest-labs/FLUX.1-dev"
|
| 17 |
MAX_SEED = np.iinfo(np.int32).max
|
| 18 |
|
|
|
|
| 35 |
else:
|
| 36 |
return lora_add
|
| 37 |
|
| 38 |
+
def handle_file(img_path):
|
| 39 |
+
return Image.open(img_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
def get_upscale_finegrain(prompt, img_path, upscale_factor):
|
| 42 |
+
if upscale_factor == 0:
|
| 43 |
+
return handle_file(img_path)
|
| 44 |
client = Client("finegrain/finegrain-image-enhancer")
|
| 45 |
result = client.predict(
|
| 46 |
input_image=handle_file(img_path),
|
|
|
|
| 73 |
|
| 74 |
return result
|
| 75 |
|
| 76 |
+
async def generate_image(
|
| 77 |
+
prompt:str,
|
| 78 |
+
model:str,
|
| 79 |
+
lora_word:str,
|
| 80 |
+
width:int=768,
|
| 81 |
+
height:int=1024,
|
| 82 |
+
scales:float=3.5,
|
| 83 |
+
steps:int=24,
|
| 84 |
+
seed:int=-1
|
| 85 |
+
):
|
| 86 |
+
if seed == -1:
|
| 87 |
+
seed = random.randint(0, MAX_SEED)
|
| 88 |
+
seed = int(seed)
|
| 89 |
+
print(f'prompt:{prompt}')
|
| 90 |
+
|
| 91 |
+
text = str(translator.translate(prompt, 'English')) + "," + lora_word
|
| 92 |
+
|
| 93 |
+
try:
|
| 94 |
+
image = gr.Image(type="pil", image=gr.processing_utils.encode_pil_image(text_to_image(text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)))
|
| 95 |
+
except Exception as e:
|
| 96 |
+
raise gr.Error(f"Error in {e}")
|
| 97 |
+
|
| 98 |
+
return image, seed
|
| 99 |
+
|
| 100 |
async def gen(
|
| 101 |
prompt:str,
|
| 102 |
lora_add:str="XLabs-AI/flux-RealismLora",
|
|
|
|
| 106 |
scales:float=3.5,
|
| 107 |
steps:int=24,
|
| 108 |
seed:int=-1,
|
| 109 |
+
upscale_factor:int=0
|
| 110 |
):
|
| 111 |
model = enable_lora(lora_add)
|
| 112 |
image, seed = await generate_image(prompt,model,lora_word,width,height,scales,steps,seed)
|
|
|
|
| 125 |
sendBtn = gr.Button(scale=1, variant='primary')
|
| 126 |
with gr.Accordion("Opciones avanzadas", open=True):
|
| 127 |
with gr.Column(scale=1):
|
| 128 |
+
width = gr.Slider(label="Ancho", minimum=512, maximum=1280, step=8, value=768)
|
| 129 |
+
height = gr.Slider(label="Alto", minimum=512, maximum=1280, step=8, value=1024)
|
| 130 |
+
scales = gr.Slider(label="Guía", minimum=3.5, maximum=7, step=0.1, value=3.5)
|
| 131 |
+
steps = gr.Slider(label="Pasos", minimum=1, maximum=50, step=1)
|
| 132 |
+
upscale_factor = gr.Slider(label="Factor de escala", minimum=0, maximum=4, step=1, value=0)
|
| 133 |
+
seed = gr.Number(label="Semilla", value=-1)
|
| 134 |
+
sendBtn.click(gen, inputs=[prompt, lora_add, lora_word, width, height, scales, steps, seed, upscale_factor], outputs=[img])
|
| 135 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|