File size: 4,679 Bytes
0cfb4a5
61bff42
d4fba6d
0dec378
 
de6051a
0dec378
0a67e9a
 
a484b84
d4fba6d
2fc432b
 
 
1a52ee5
4ec4b86
219d097
c5b40c9
e3be785
61bff42
 
 
 
 
e3be785
2fc432b
61bff42
 
 
 
 
 
 
1a52ee5
61bff42
 
 
dd9a5a8
61bff42
 
 
 
 
 
2fc432b
61bff42
 
 
 
 
 
 
 
 
 
 
e3be785
61bff42
4ec4b86
61bff42
 
 
 
 
 
 
e019f29
 
 
61bff42
5e03798
b329b3a
61bff42
 
 
 
 
 
 
 
 
 
 
 
4ec4b86
61bff42
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import os
import torch
import gradio as gr
import numpy as np
import random
from huggingface_hub import AsyncInferenceClient
from translatepy import Translator
import requests
import re
import asyncio
from PIL import Image
from gradio_client import Client, handle_file
from huggingface_hub import login
from gradio_imageslider import ImageSlider

MAX_SEED = np.iinfo(np.int32).max
HF_TOKEN = os.environ.get("HF_TOKEN")
HF_TOKEN_UPSCALER = os.environ.get("HF_TOKEN_UPSCALER")

if not os.path.exists('GFPGANv1.4.pth'): os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P .")

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model_path = 'GFPGANv1.4.pth'
gfpgan = GFPGANer(model_path=model_path, upscale_factor=4, arch='clean', channel_multiplier=2, model_name='GPFGAN', device=device)

async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
	try: 
		if seed == -1: seed = random.randint(0, MAX_SEED); seed = int(seed)
		text = str(Translator().translate(prompt, 'English')) + "," + lora_word
		client = AsyncInferenceClient()
		image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
		return image, seed
	except Exception as e: print(f"Error generating image: {e}"); return None, None

def get_upscale_gfpgan(prompt, img_path):
	try: return gfpgan.enhance(img_path)
	except Exception as e: print(f"Error upscale image: {e}"); return None

def get_upscale_finegrain(prompt, img_path, upscale_factor):
	try: 
		client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
		result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process")
		return result[1]
	except Exception as e: print(f"Error upscale image: {e}"); return None

async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora, upscale_model):
	model = enable_lora(lora_model, basemodel) if process_lora else basemodel
	image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
	if image is None: return [None, None]
	image_path = "temp_image.jpg"; image.save(image_path, format="JPEG")
	if process_upscale:
		if upscale_model == "GPFGAN": upscale_image = get_upscale_gfpgan(prompt, image_path)
		elif upscale_model == "Finegrain": upscale_image = get_upscale_finegrain(prompt, image_path, upscale_factor)
		upscale_image_path = "upscale_image.jpg"; upscale_image.save(upscale_image_path, format="JPEG")
		return [image_path, upscale_image_path]
	else: return [image_path, image_path]

css = """#col-container{ margin: 0 auto; max-width: 1024px;}"""
with gr.Blocks(css=css, theme="Nymbo/Nymbo_Theme") as demo:
	with gr.Column(elem_id="col-container"):
		with gr.Row():
			with gr.Column(scale=3): output_res = ImageSlider(label="Flux / Upscaled")
			with gr.Column(scale=2): 
				prompt = gr.Textbox(label="Descripción de imágen")
				basemodel_choice = gr.Dropdown(label="Modelo", choices=["black-forest-labs/FLUX.1-schnell", "black-forest-labs/FLUX.1-DEV"], value="black-forest-labs/FLUX.1-schnell")
				lora_model_choice = gr.Dropdown(label="LORA Realismo", choices=["Shakker-Labs/FLUX.1-dev-LoRA-add-details", "XLabs-AI/flux-RealismLora"], value="XLabs-AI/flux-RealismLora")
                process_lora = gr.Checkbox(label="Procesar LORA")
                process_upscale = gr.Checkbox(label="Procesar Escalador")
                upscale_factor = gr.Radio(label="Factor de Escala", choices=[2, 4, 8], value=2)
                upscale_model = gr.Radio(label="Modelo de Escalado", choices=["GPFGAN", "Finegrain"], value="GPFGAN")
                
                with gr.Accordion(label="Opciones Avanzadas", open=False):
					width = gr.Slider(label="Ancho", minimum=512, maximum=1280, step=8, value=512)
					height = gr.Slider(label="Alto", minimum=512, maximum=1280, step=8, value=512)
					scales = gr.Slider(label="Escalado", minimum=1, maximum=20, step=1, value=10)
					steps = gr.Slider(label="Pasos", minimum=1, maximum=100, step=1, value=20)
					seed = gr.Number(label="Semilla", value=-1)

				btn = gr.Button("Generar")
				btn.click(
					fn=gen,
					inputs=[prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora, upscale_model],
					outputs=output_res,
				)

	demo.launch()