Spaces:
Running
Running
File size: 4,679 Bytes
0cfb4a5 61bff42 d4fba6d 0dec378 de6051a 0dec378 0a67e9a a484b84 d4fba6d 2fc432b 1a52ee5 4ec4b86 219d097 c5b40c9 e3be785 61bff42 e3be785 2fc432b 61bff42 1a52ee5 61bff42 dd9a5a8 61bff42 2fc432b 61bff42 e3be785 61bff42 4ec4b86 61bff42 e019f29 61bff42 5e03798 b329b3a 61bff42 4ec4b86 61bff42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
import os
import torch
import gradio as gr
import numpy as np
import random
from huggingface_hub import AsyncInferenceClient
from translatepy import Translator
import requests
import re
import asyncio
from PIL import Image
from gradio_client import Client, handle_file
from huggingface_hub import login
from gradio_imageslider import ImageSlider
MAX_SEED = np.iinfo(np.int32).max
HF_TOKEN = os.environ.get("HF_TOKEN")
HF_TOKEN_UPSCALER = os.environ.get("HF_TOKEN_UPSCALER")
if not os.path.exists('GFPGANv1.4.pth'): os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P .")
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model_path = 'GFPGANv1.4.pth'
gfpgan = GFPGANer(model_path=model_path, upscale_factor=4, arch='clean', channel_multiplier=2, model_name='GPFGAN', device=device)
async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
try:
if seed == -1: seed = random.randint(0, MAX_SEED); seed = int(seed)
text = str(Translator().translate(prompt, 'English')) + "," + lora_word
client = AsyncInferenceClient()
image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
return image, seed
except Exception as e: print(f"Error generating image: {e}"); return None, None
def get_upscale_gfpgan(prompt, img_path):
try: return gfpgan.enhance(img_path)
except Exception as e: print(f"Error upscale image: {e}"); return None
def get_upscale_finegrain(prompt, img_path, upscale_factor):
try:
client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER)
result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process")
return result[1]
except Exception as e: print(f"Error upscale image: {e}"); return None
async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora, upscale_model):
model = enable_lora(lora_model, basemodel) if process_lora else basemodel
image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed)
if image is None: return [None, None]
image_path = "temp_image.jpg"; image.save(image_path, format="JPEG")
if process_upscale:
if upscale_model == "GPFGAN": upscale_image = get_upscale_gfpgan(prompt, image_path)
elif upscale_model == "Finegrain": upscale_image = get_upscale_finegrain(prompt, image_path, upscale_factor)
upscale_image_path = "upscale_image.jpg"; upscale_image.save(upscale_image_path, format="JPEG")
return [image_path, upscale_image_path]
else: return [image_path, image_path]
css = """#col-container{ margin: 0 auto; max-width: 1024px;}"""
with gr.Blocks(css=css, theme="Nymbo/Nymbo_Theme") as demo:
with gr.Column(elem_id="col-container"):
with gr.Row():
with gr.Column(scale=3): output_res = ImageSlider(label="Flux / Upscaled")
with gr.Column(scale=2):
prompt = gr.Textbox(label="Descripción de imágen")
basemodel_choice = gr.Dropdown(label="Modelo", choices=["black-forest-labs/FLUX.1-schnell", "black-forest-labs/FLUX.1-DEV"], value="black-forest-labs/FLUX.1-schnell")
lora_model_choice = gr.Dropdown(label="LORA Realismo", choices=["Shakker-Labs/FLUX.1-dev-LoRA-add-details", "XLabs-AI/flux-RealismLora"], value="XLabs-AI/flux-RealismLora")
process_lora = gr.Checkbox(label="Procesar LORA")
process_upscale = gr.Checkbox(label="Procesar Escalador")
upscale_factor = gr.Radio(label="Factor de Escala", choices=[2, 4, 8], value=2)
upscale_model = gr.Radio(label="Modelo de Escalado", choices=["GPFGAN", "Finegrain"], value="GPFGAN")
with gr.Accordion(label="Opciones Avanzadas", open=False):
width = gr.Slider(label="Ancho", minimum=512, maximum=1280, step=8, value=512)
height = gr.Slider(label="Alto", minimum=512, maximum=1280, step=8, value=512)
scales = gr.Slider(label="Escalado", minimum=1, maximum=20, step=1, value=10)
steps = gr.Slider(label="Pasos", minimum=1, maximum=100, step=1, value=20)
seed = gr.Number(label="Semilla", value=-1)
btn = gr.Button("Generar")
btn.click(
fn=gen,
inputs=[prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora, upscale_model],
outputs=output_res,
)
demo.launch() |