File size: 7,899 Bytes
750020e
 
11b325d
750020e
 
 
 
 
 
 
 
 
 
 
98fced7
750020e
 
 
 
 
 
4c91de3
 
 
 
4fa44c7
 
4c91de3
 
762f02d
 
4fa44c7
4c91de3
4fa44c7
4c91de3
 
4fa44c7
4c91de3
1995166
4fa44c7
 
1995166
4fa44c7
 
 
 
 
 
4c91de3
1af25ec
ceed53e
 
1af25ec
 
4c91de3
 
 
9fcaecd
 
 
 
 
 
 
 
 
 
750020e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe3eace
 
 
033a22d
 
 
 
7a72935
033a22d
227499e
033a22d
227499e
 
033a22d
 
 
 
227499e
033a22d
227499e
 
033a22d
 
227499e
033a22d
 
fe3eace
033a22d
 
589a379
033a22d
4c8a985
fe3eace
4c8a985
 
589a379
 
7a72935
 
9fcaecd
b4f2e1a
9fcaecd
 
 
4c91de3
 
 
7a72935
 
 
4c91de3
f7b2a4e
4512bf7
4c91de3
 
589a379
7a72935
 
 
 
 
589a379
4405d10
 
 
 
7a72935
4405d10
 
7a72935
 
4c91de3
7a72935
750020e
 
 
 
 
 
 
4c91de3
05775e4
4c91de3
750020e
05775e4
750020e
05775e4
4c91de3
750020e
a0503fe
 
 
841a86c
a0503fe
 
589a379
 
 
 
 
7a72935
589a379
 
 
 
 
 
 
fe3eace
750020e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e9c47f
e03a3c9
589a379
98fced7
7a72935
fe3eace
750020e
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import transformers
import re
from transformers import AutoConfig, AutoTokenizer, AutoModel, AutoModelForCausalLM, pipeline
import torch
import gradio as gr
import json
import os
import shutil
import requests
import pandas as pd

# Define the device
device = "cuda" if torch.cuda.is_available() else "cpu"

editorial_model = "PleIAs/Bibliography-Formatter"
token_classifier = pipeline(
    "token-classification", model=editorial_model, aggregation_strategy="simple", device=device
)

tokenizer = AutoTokenizer.from_pretrained(editorial_model, model_max_length=512)

css = """
<style>
.manuscript {
    display: flex;
    margin-bottom: 10px;
    align-items: baseline;
}
.annotation {
    width: 15%;
    padding-right: 20px;
    color: grey !important;
    font-style: italic;
    text-align: right;
}
.content {
    width: 80%;
}
h2 {
    margin: 0;
    font-size: 1.5em;
}
.title-content h2 {
    font-weight: bold;
}
.bibliography-content {
    color:darkgreen !important;
    margin-top: -5px;  /* Adjust if needed to align with annotation */
}

.paratext-content {
    color:#a4a4a4 !important;
    margin-top: -5px;  /* Adjust if needed to align with annotation */
}
</style>
"""

# Preprocess the 'word' column
def preprocess_text(text):
    # Remove HTML tags
    text = re.sub(r'<[^>]+>', '', text)
    # Replace newlines with spaces
    text = re.sub(r'\n', ' ', text)
    # Replace multiple spaces with a single space
    text = re.sub(r'\s+', ' ', text)
    # Strip leading and trailing whitespace
    return text.strip()
    
def split_text(text, max_tokens=500):
    # Split the text by newline characters
    parts = text.split("\n")
    chunks = []
    current_chunk = ""

    for part in parts:
        # Add part to current chunk
        if current_chunk:
            temp_chunk = current_chunk + "\n" + part
        else:
            temp_chunk = part

        # Tokenize the temporary chunk
        num_tokens = len(tokenizer.tokenize(temp_chunk))

        if num_tokens <= max_tokens:
            current_chunk = temp_chunk
        else:
            if current_chunk:
                chunks.append(current_chunk)
            current_chunk = part

    if current_chunk:
        chunks.append(current_chunk)

    # If no newlines were found and still exceeding max_tokens, split further
    if len(chunks) == 1 and len(tokenizer.tokenize(chunks[0])) > max_tokens:
        long_text = chunks[0]
        chunks = []
        while len(tokenizer.tokenize(long_text)) > max_tokens:
            split_point = len(long_text) // 2
            while split_point < len(long_text) and not re.match(r'\s', long_text[split_point]):
                split_point += 1
            # Ensure split_point does not go out of range
            if split_point >= len(long_text):
                split_point = len(long_text) - 1
            chunks.append(long_text[:split_point].strip())
            long_text = long_text[split_point:].strip()
        if long_text:
            chunks.append(long_text)

    return chunks

def remove_punctuation(text):
    return re.sub(r'[^\w\s]', '', text)

def extract_year(text):
    year_match = re.search(r'\b(\d{4})\b', text)
    return year_match.group(1) if year_match else None

def create_bibtex_entry(data):
    # Determine the entry type
    if 'journal' in data:
        entry_type = 'article'
    elif 'booktitle' in data:
        entry_type = 'chapter'
    else:
        entry_type = 'book'

    # Extract year from 'None' if it exists
    none_content = data.pop('none', '')
    year = extract_year(none_content)
    if year and 'year' not in data:
        data['year'] = year

    # Create BibTeX ID
    author_words = data.get('author', '').split()
    first_author = author_words[0] if author_words else 'Unknown'
    bibtex_id = f"{first_author}{year}" if year else first_author
    bibtex_id = remove_punctuation(bibtex_id.lower())

    bibtex = f"@{entry_type}{{{bibtex_id},\n"
    for key, value in data.items():
        if value.strip():
            if key in ['volume', 'year']:
                value = remove_punctuation(value)
            if key == 'pages':
                value = value.replace('p. ', '')
            bibtex += f"  {key.lower()} = {{{value.strip()}}},\n"
    bibtex = bibtex.rstrip(',\n') + "\n}"
    return bibtex

def transform_chunks(marianne_segmentation):
    marianne_segmentation = pd.DataFrame(marianne_segmentation)
    marianne_segmentation = marianne_segmentation[marianne_segmentation['entity_group'] != 'separator']
    marianne_segmentation['word'] = marianne_segmentation['word'].astype(str).str.replace('¶', '\n', regex=False)
    marianne_segmentation['word'] = marianne_segmentation['word'].astype(str).apply(preprocess_text)
    marianne_segmentation = marianne_segmentation[marianne_segmentation['word'].notna() & (marianne_segmentation['word'] != '') & (marianne_segmentation['word'] != ' ')]

    html_output = []
    bibtex_data = {}
    current_entity = None

    for _, row in marianne_segmentation.iterrows():
        entity_group = row['entity_group']
        result_entity = "[" + entity_group.capitalize() + "]"
        word = row['word']
        
        if entity_group != 'None':
            if entity_group in bibtex_data:
                bibtex_data[entity_group] += ' ' + word
            else:
                bibtex_data[entity_group] = word
            current_entity = entity_group
        else:
            if current_entity:
                bibtex_data[current_entity] += ' ' + word
            else:
                bibtex_data['None'] = bibtex_data.get('None', '') + ' ' + word
        
        html_output.append(f'<div class="manuscript"><div class="annotation">{result_entity}</div><div class="content">{word}</div></div>')

    bibtex_entry = create_bibtex_entry(bibtex_data)
    
    final_html = '\n'.join(html_output)
    return final_html, bibtex_entry

# Class to encapsulate the Falcon chatbot
class MistralChatBot:
    def __init__(self, system_prompt="Le dialogue suivant est une conversation"):
        self.system_prompt = system_prompt

    def predict(self, user_message):
        editorial_text = re.sub("\n", " ¶ ", user_message)
        num_tokens = len(tokenizer.tokenize(editorial_text))
        
        if num_tokens > 500:
            batch_prompts = split_text(editorial_text, max_tokens=500)
        else:
            batch_prompts = [editorial_text]
    
        out = token_classifier(batch_prompts)
        classified_list = []
        for classification in out:
            df = pd.DataFrame(classification)
            classified_list.append(df)
    
        classified_list = pd.concat(classified_list)
        
        # Debugging: Print the classified list
        print("Classified List:")
        print(classified_list)
        
        html_output, bibtex_entry = transform_chunks(classified_list)
        
        # Debugging: Print the outputs
        print("HTML Output:")
        print(html_output)
        print("BibTeX Entry:")
        print(bibtex_entry)
        
        return bibtex_entry

# Create the Falcon chatbot instance
mistral_bot = MistralChatBot()

# Define the Gradio interface
title = "Éditorialisation"
description = "Un outil expérimental d'identification de la structure du texte à partir d'un encoder (Deberta)"
examples = [
    [
        "Qui peut bénéficier de l'AIP?",  # user_message
        0.7  # temperature
    ]
]

demo = gr.Blocks()

with gr.Blocks(theme='JohnSmith9982/small_and_pretty') as demo:
    gr.HTML("""<h1 style="text-align:center">Reversed Zotero</h1>""")
    text_input = gr.Textbox(label="Your text", type="text", lines=5)
    text_button = gr.Button("Extract a structured bibtex")
    bibtex_output = gr.Textbox(label="BibTeX Entry", lines=10)
    text_button.click(mistral_bot.predict, inputs=text_input, outputs=[bibtex_output])

if __name__ == "__main__":
    demo.queue().launch()