|
--- |
|
title: AirfRANS remeshed visualization |
|
emoji: 🏆 |
|
colorFrom: purple |
|
colorTo: pink |
|
sdk: gradio |
|
sdk_version: 5.16.0 |
|
app_file: app.py |
|
pinned: false |
|
license: mit |
|
--- |
|
|
|
This space provides a visualization of the dataset created in [the paper](https://arxiv.org/abs/2212.07564): |
|
|
|
``` |
|
@misc{bonnet2023airfranshighfidelitycomputational, |
|
title={AirfRANS: High Fidelity Computational Fluid Dynamics Dataset for Approximating Reynolds-Averaged Navier-Stokes Solutions}, |
|
author={Florent Bonnet and Ahmed Jocelyn Mazari and Paola Cinnella and Patrick Gallinari}, |
|
year={2023}, |
|
eprint={2212.07564}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG}, |
|
url={https://arxiv.org/abs/2212.07564}, |
|
} |
|
``` |
|
|
|
This dataset is used in [the paper](https://arxiv.org/abs/2305.12871), and available at at [huggingface](https://huggingface.co/datasets/PLAID-datasets/AirfRANS_remeshed) and [Zenodo](https://zenodo.org/records/14840388). |
|
|
|
``` |
|
@misc{casenave2023mmgpmeshmorphinggaussian, |
|
title={MMGP: a Mesh Morphing Gaussian Process-based machine learning method for regression of physical problems under non-parameterized geometrical variability}, |
|
author={Fabien Casenave and Brian Staber and Xavier Roynard}, |
|
year={2023}, |
|
eprint={2305.12871}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG}, |
|
url={https://arxiv.org/abs/2305.12871}, |
|
} |
|
``` |