File size: 1,387 Bytes
d04d0b1
7e31930
d04d0b1
 
 
 
e720645
d04d0b1
 
 
 
 
0149cec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dedad56
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
---
title: AirfRANS remeshed visualization
emoji: 🏆
colorFrom: purple
colorTo: pink
sdk: gradio
sdk_version: 5.16.0
app_file: app.py
pinned: false
license: mit
---

This space provides a visualization of the dataset created in [the paper](https://arxiv.org/abs/2212.07564):

```
@misc{bonnet2023airfranshighfidelitycomputational,
      title={AirfRANS: High Fidelity Computational Fluid Dynamics Dataset for Approximating Reynolds-Averaged Navier-Stokes Solutions}, 
      author={Florent Bonnet and Ahmed Jocelyn Mazari and Paola Cinnella and Patrick Gallinari},
      year={2023},
      eprint={2212.07564},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2212.07564}, 
}
```

This dataset is used in [the paper](https://arxiv.org/abs/2305.12871), and available at at [huggingface](https://huggingface.co/datasets/PLAID-datasets/AirfRANS_remeshed) and [Zenodo](https://zenodo.org/records/14840388).

```
@misc{casenave2023mmgpmeshmorphinggaussian,
      title={MMGP: a Mesh Morphing Gaussian Process-based machine learning method for regression of physical problems under non-parameterized geometrical variability}, 
      author={Fabien Casenave and Brian Staber and Xavier Roynard},
      year={2023},
      eprint={2305.12871},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2305.12871}, 
}
```