File size: 3,937 Bytes
6f8934c
 
 
abd9fd7
6f8934c
 
 
 
 
 
abd9fd7
6f8934c
 
abd9fd7
6f8934c
 
 
 
 
abd9fd7
6f8934c
 
 
 
 
abd9fd7
6f8934c
 
 
 
abd9fd7
6f8934c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47dded2
abd9fd7
6f8934c
 
 
 
 
 
47dded2
abd9fd7
 
 
 
6f8934c
abd9fd7
6f8934c
 
 
 
 
 
 
 
 
47dded2
 
 
f1d7efb
47dded2
 
6f8934c
 
 
abd9fd7
6f8934c
 
 
 
 
 
abd9fd7
6f8934c
 
 
 
 
 
 
 
 
abd9fd7
6f8934c
 
 
 
abd9fd7
6f8934c
 
 
 
 
47dded2
6f8934c
 
 
 
abd9fd7
 
 
 
 
 
 
 
 
 
 
 
 
6f8934c
abd9fd7
 
69d0c7f
abd9fd7
6f8934c
 
abd9fd7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import gradio as gr
import os
import spaces
from transformers import GemmaTokenizer, AutoModelForCausalLM
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread

# Set an environment variable
HF_TOKEN = os.environ.get("HF_TOKEN", None)


DESCRIPTION = '''
<div>
<h1 style="text-align: center;">deepseek-ai/DeepSeek-R1-Distill-Llama-8B</h1>
</div>
'''

LICENSE = """
<p/>

---
"""

PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
   <h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">DeepSeek-R1-Distill-Llama-8B</h1>
   <p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me anything...</p>
</div>
"""


css = """
h1 {
  text-align: center;
  display: block;
}

#duplicate-button {
  margin: auto;
  color: white;
  background: #1565c0;
  border-radius: 100vh;
}
"""

# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("Orenguteng/Llama-3-8B-Lexi-Uncensored")
model = AutoModelForCausalLM.from_pretrained("Orenguteng/Llama-3-8B-Lexi-Uncensored", device_map="auto")  # to("cuda:0") 
terminators = [
    tokenizer.eos_token_id,
    tokenizer.convert_tokens_to_ids("<|eot_id|>")
]

@spaces.GPU(duration=120)
def chat_llama3_8b(message: str, 
              history: list, 
              temperature: float, 
              max_new_tokens: int
             ) -> str:
    """
    Generate a streaming response using the llama3-8b model.
    Args:
        message (str): The input message.
        history (list): The conversation history used by ChatInterface.
        temperature (float): The temperature for generating the response.
        max_new_tokens (int): The maximum number of new tokens to generate.
    Returns:
        str: The generated response.
    """
    conversation = []
    for user, assistant in history:
        conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
    conversation.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device)
    
    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)

    generate_kwargs = dict(
        input_ids= input_ids,
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        temperature=temperature,
        eos_token_id=terminators,
    )
    # This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash.             
    if temperature == 0:
        generate_kwargs['do_sample'] = False
        
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        #print(outputs)
        yield "".join(outputs)
        

# Gradio block
chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')

with gr.Blocks(fill_height=True, css=css) as demo:
    
    gr.Markdown(DESCRIPTION)
    gr.ChatInterface(
        fn=chat_llama3_8b,
        chatbot=chatbot,
        fill_height=True,
        additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
        additional_inputs=[
            gr.Slider(minimum=0,
                      maximum=1, 
                      step=0.1,
                      value=0.8, 
                      label="Temperature", 
                      render=False),
            gr.Slider(minimum=128, 
                      maximum=4096,
                      step=1,
                      value=4096, 
                      label="Max new tokens", 
                      render=False ),
            ],
        examples=[
            ['Who are you?'],
        cache_examples=False,
    )
    
if __name__ == "__main__":
    demo.launch()