OscarFAI commited on
Commit
69d0c7f
·
1 Parent(s): 6f8934c

System prompt

Browse files
Files changed (1) hide show
  1. app.py +34 -38
app.py CHANGED
@@ -1,23 +1,20 @@
1
  import gradio as gr
2
  import os
3
  import spaces
4
- from transformers import GemmaTokenizer, AutoModelForCausalLM
5
  from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
6
  from threading import Thread
7
 
8
  # Set an environment variable
9
  HF_TOKEN = os.environ.get("HF_TOKEN", None)
10
 
11
-
12
  DESCRIPTION = '''
13
  <div>
14
- <h1 style="text-align: center;">deepseek-ai/DeepSeek-R1-Distill-Llama-8B</h1>
15
  </div>
16
  '''
17
 
18
  LICENSE = """
19
  <p/>
20
-
21
  ---
22
  """
23
 
@@ -28,7 +25,6 @@ PLACEHOLDER = """
28
  </div>
29
  """
30
 
31
-
32
  css = """
33
  h1 {
34
  text-align: center;
@@ -45,7 +41,8 @@ h1 {
45
 
46
  # Load the tokenizer and model
47
  tokenizer = AutoTokenizer.from_pretrained("mistralai/Ministral-8B-Instruct-2410")
48
- model = AutoModelForCausalLM.from_pretrained("mistralai/Ministral-8B-Instruct-2410", device_map="auto") # to("cuda:0")
 
49
  terminators = [
50
  tokenizer.eos_token_id,
51
  tokenizer.convert_tokens_to_ids("<|eot_id|>")
@@ -53,23 +50,30 @@ terminators = [
53
 
54
  @spaces.GPU(duration=120)
55
  def chat_llama3_8b(message: str,
56
- history: list,
57
- temperature: float,
58
- max_new_tokens: int
59
- ) -> str:
60
  """
61
- Generate a streaming response using the llama3-8b model.
62
  Args:
63
  message (str): The input message.
64
  history (list): The conversation history used by ChatInterface.
65
  temperature (float): The temperature for generating the response.
66
  max_new_tokens (int): The maximum number of new tokens to generate.
 
67
  Returns:
68
  str: The generated response.
69
  """
70
  conversation = []
 
 
 
 
 
71
  for user, assistant in history:
72
  conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
 
73
  conversation.append({"role": "user", "content": message})
74
 
75
  input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device)
@@ -77,14 +81,14 @@ def chat_llama3_8b(message: str,
77
  streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
78
 
79
  generate_kwargs = dict(
80
- input_ids= input_ids,
81
  streamer=streamer,
82
  max_new_tokens=max_new_tokens,
83
  do_sample=True,
84
  temperature=temperature,
85
  eos_token_id=terminators,
86
  )
87
- # This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash.
88
  if temperature == 0:
89
  generate_kwargs['do_sample'] = False
90
 
@@ -94,45 +98,37 @@ def chat_llama3_8b(message: str,
94
  outputs = []
95
  for text in streamer:
96
  outputs.append(text)
97
- #print(outputs)
98
  yield "".join(outputs)
99
 
100
 
101
  # Gradio block
102
- chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')
103
 
104
  with gr.Blocks(fill_height=True, css=css) as demo:
105
 
106
  gr.Markdown(DESCRIPTION)
 
 
 
 
 
 
 
107
  gr.ChatInterface(
108
  fn=chat_llama3_8b,
109
  chatbot=chatbot,
110
  fill_height=True,
111
  additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
112
  additional_inputs=[
113
- gr.Slider(minimum=0,
114
- maximum=1,
115
- step=0.1,
116
- value=0.8,
117
- label="Temperature",
118
- render=False),
119
- gr.Slider(minimum=128,
120
- maximum=4096,
121
- step=1,
122
- value=4096,
123
- label="Max new tokens",
124
- render=False ),
125
- ],
126
  examples=[
127
- ['How to setup a human base on Mars? Give short answer.'],
128
- ['Explain theory of relativity to me like I’m 8 years old.'],
129
- ['What is 9,000 * 9,000?'],
130
- ['Write a pun-filled happy birthday message to my friend Alex.'],
131
- ['Justify why a penguin might make a good king of the jungle.']
132
- ],
133
- cache_examples=False,
134
- )
135
-
136
  if __name__ == "__main__":
137
  demo.launch()
138
-
 
1
  import gradio as gr
2
  import os
3
  import spaces
 
4
  from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
5
  from threading import Thread
6
 
7
  # Set an environment variable
8
  HF_TOKEN = os.environ.get("HF_TOKEN", None)
9
 
 
10
  DESCRIPTION = '''
11
  <div>
12
+ <h1 style="text-align: center;">Mistral Chat</h1>
13
  </div>
14
  '''
15
 
16
  LICENSE = """
17
  <p/>
 
18
  ---
19
  """
20
 
 
25
  </div>
26
  """
27
 
 
28
  css = """
29
  h1 {
30
  text-align: center;
 
41
 
42
  # Load the tokenizer and model
43
  tokenizer = AutoTokenizer.from_pretrained("mistralai/Ministral-8B-Instruct-2410")
44
+ model = AutoModelForCausalLM.from_pretrained("mistralai/Ministral-8B-Instruct-2410", device_map="auto")
45
+
46
  terminators = [
47
  tokenizer.eos_token_id,
48
  tokenizer.convert_tokens_to_ids("<|eot_id|>")
 
50
 
51
  @spaces.GPU(duration=120)
52
  def chat_llama3_8b(message: str,
53
+ history: list,
54
+ temperature: float,
55
+ max_new_tokens: int,
56
+ system_prompt: str) -> str:
57
  """
58
+ Generate a streaming response using the Mistral-8B model.
59
  Args:
60
  message (str): The input message.
61
  history (list): The conversation history used by ChatInterface.
62
  temperature (float): The temperature for generating the response.
63
  max_new_tokens (int): The maximum number of new tokens to generate.
64
+ system_prompt (str): The system prompt to guide the assistant's behavior.
65
  Returns:
66
  str: The generated response.
67
  """
68
  conversation = []
69
+
70
+ # Include system prompt at the beginning if provided
71
+ if system_prompt:
72
+ conversation.append({"role": "system", "content": system_prompt})
73
+
74
  for user, assistant in history:
75
  conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
76
+
77
  conversation.append({"role": "user", "content": message})
78
 
79
  input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device)
 
81
  streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
82
 
83
  generate_kwargs = dict(
84
+ input_ids=input_ids,
85
  streamer=streamer,
86
  max_new_tokens=max_new_tokens,
87
  do_sample=True,
88
  temperature=temperature,
89
  eos_token_id=terminators,
90
  )
91
+
92
  if temperature == 0:
93
  generate_kwargs['do_sample'] = False
94
 
 
98
  outputs = []
99
  for text in streamer:
100
  outputs.append(text)
 
101
  yield "".join(outputs)
102
 
103
 
104
  # Gradio block
105
+ chatbot = gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')
106
 
107
  with gr.Blocks(fill_height=True, css=css) as demo:
108
 
109
  gr.Markdown(DESCRIPTION)
110
+
111
+ system_prompt_input = gr.Textbox(
112
+ label="System Prompt",
113
+ placeholder="Enter system instructions for the model...",
114
+ lines=2
115
+ )
116
+
117
  gr.ChatInterface(
118
  fn=chat_llama3_8b,
119
  chatbot=chatbot,
120
  fill_height=True,
121
  additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
122
  additional_inputs=[
123
+ system_prompt_input,
124
+ gr.Slider(minimum=0, maximum=1, step=0.1, value=0.8, label="Temperature", render=False),
125
+ gr.Slider(minimum=128, maximum=4096, step=1, value=4096, label="Max new tokens", render=False),
126
+ ],
 
 
 
 
 
 
 
 
 
127
  examples=[
128
+ ['Are you a sentient being?']
129
+ ],
130
+ cache_examples=False
131
+ )
132
+
 
 
 
 
133
  if __name__ == "__main__":
134
  demo.launch()