Llama
Browse files
app.py
CHANGED
@@ -3,14 +3,13 @@ import os
|
|
3 |
import spaces
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
5 |
from threading import Thread
|
6 |
-
import torch
|
7 |
|
8 |
# Set an environment variable
|
9 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
10 |
|
11 |
DESCRIPTION = '''
|
12 |
<div>
|
13 |
-
<h1 style="text-align: center;">Mistral
|
14 |
</div>
|
15 |
'''
|
16 |
|
@@ -21,7 +20,7 @@ LICENSE = """
|
|
21 |
|
22 |
PLACEHOLDER = """
|
23 |
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
|
24 |
-
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">Mistral
|
25 |
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me anything...</p>
|
26 |
</div>
|
27 |
"""
|
@@ -41,12 +40,8 @@ h1 {
|
|
41 |
"""
|
42 |
|
43 |
# Load the tokenizer and model
|
44 |
-
tokenizer = AutoTokenizer.from_pretrained("
|
45 |
-
model = AutoModelForCausalLM.from_pretrained("
|
46 |
-
|
47 |
-
# Ensure we have a pad token
|
48 |
-
if tokenizer.pad_token_id is None:
|
49 |
-
tokenizer.pad_token_id = tokenizer.eos_token_id
|
50 |
|
51 |
terminators = [
|
52 |
tokenizer.eos_token_id,
|
@@ -54,19 +49,17 @@ terminators = [
|
|
54 |
]
|
55 |
|
56 |
@spaces.GPU(duration=120)
|
57 |
-
def
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
system_prompt: str) -> str:
|
63 |
"""
|
64 |
Generate a streaming response using the Mistral-8B model.
|
65 |
Args:
|
66 |
message (str): The input message.
|
67 |
history (list): The conversation history used by ChatInterface.
|
68 |
temperature (float): The temperature for generating the response.
|
69 |
-
top_p (float): The top-p (nucleus) sampling parameter.
|
70 |
max_new_tokens (int): The maximum number of new tokens to generate.
|
71 |
system_prompt (str): The system prompt to guide the assistant's behavior.
|
72 |
Returns:
|
@@ -74,42 +67,25 @@ def chat_mistral(message: str,
|
|
74 |
"""
|
75 |
conversation = []
|
76 |
|
77 |
-
#
|
78 |
if system_prompt:
|
79 |
-
|
80 |
-
else:
|
81 |
-
formatted_prompt = ""
|
82 |
-
|
83 |
-
# Modify first user message to include system prompt
|
84 |
-
if history:
|
85 |
-
first_user_msg = f"{formatted_prompt}{history[0][0]}" if formatted_prompt else history[0][0]
|
86 |
-
conversation.append({"role": "user", "content": first_user_msg})
|
87 |
-
conversation.append({"role": "assistant", "content": history[0][1]})
|
88 |
-
|
89 |
-
for user, assistant in history[1:]:
|
90 |
-
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
|
91 |
-
else:
|
92 |
-
# First message in a new conversation
|
93 |
-
first_message = f"{formatted_prompt}{message}" if formatted_prompt else message
|
94 |
-
conversation.append({"role": "user", "content": first_message})
|
95 |
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
attention_mask = input_ids.ne(tokenizer.pad_token_id).to(dtype=torch.long, device=model.device)
|
101 |
|
|
|
|
|
102 |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
103 |
|
104 |
generate_kwargs = dict(
|
105 |
input_ids=input_ids,
|
106 |
-
attention_mask=attention_mask, # Fixes the warning
|
107 |
streamer=streamer,
|
108 |
max_new_tokens=max_new_tokens,
|
109 |
do_sample=True,
|
110 |
temperature=temperature,
|
111 |
-
top_p=top_p,
|
112 |
-
pad_token_id=tokenizer.pad_token_id, # Explicitly set
|
113 |
eos_token_id=terminators,
|
114 |
)
|
115 |
|
@@ -139,22 +115,17 @@ with gr.Blocks(fill_height=True, css=css) as demo:
|
|
139 |
)
|
140 |
|
141 |
gr.ChatInterface(
|
142 |
-
fn=
|
143 |
chatbot=chatbot,
|
144 |
fill_height=True,
|
145 |
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
|
146 |
additional_inputs=[
|
147 |
system_prompt_input,
|
148 |
gr.Slider(minimum=0, maximum=1, step=0.1, value=0.8, label="Temperature", render=False),
|
149 |
-
gr.Slider(minimum=0, maximum=1, step=0.1, value=0.9, label="Top-p", render=False),
|
150 |
gr.Slider(minimum=128, maximum=4096, step=1, value=4096, label="Max new tokens", render=False),
|
151 |
],
|
152 |
examples=[
|
153 |
-
['
|
154 |
-
['Explain theory of relativity to me like I’m 8 years old.'],
|
155 |
-
['What is 9,000 * 9,000?'],
|
156 |
-
['Write a pun-filled happy birthday message to my friend Alex.'],
|
157 |
-
['Justify why a penguin might make a good king of the jungle.']
|
158 |
],
|
159 |
cache_examples=False
|
160 |
)
|
|
|
3 |
import spaces
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
5 |
from threading import Thread
|
|
|
6 |
|
7 |
# Set an environment variable
|
8 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
9 |
|
10 |
DESCRIPTION = '''
|
11 |
<div>
|
12 |
+
<h1 style="text-align: center;">Mistral Chat</h1>
|
13 |
</div>
|
14 |
'''
|
15 |
|
|
|
20 |
|
21 |
PLACEHOLDER = """
|
22 |
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
|
23 |
+
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">Mistral Chat 8B</h1>
|
24 |
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me anything...</p>
|
25 |
</div>
|
26 |
"""
|
|
|
40 |
"""
|
41 |
|
42 |
# Load the tokenizer and model
|
43 |
+
tokenizer = AutoTokenizer.from_pretrained("Orenguteng/Llama-3-8B-Lexi-Uncensored")
|
44 |
+
model = AutoModelForCausalLM.from_pretrained("Orenguteng/Llama-3-8B-Lexi-Uncensored", device_map="auto")
|
|
|
|
|
|
|
|
|
45 |
|
46 |
terminators = [
|
47 |
tokenizer.eos_token_id,
|
|
|
49 |
]
|
50 |
|
51 |
@spaces.GPU(duration=120)
|
52 |
+
def chat_llama3_8b(message: str,
|
53 |
+
history: list,
|
54 |
+
temperature: float,
|
55 |
+
max_new_tokens: int,
|
56 |
+
system_prompt: str) -> str:
|
|
|
57 |
"""
|
58 |
Generate a streaming response using the Mistral-8B model.
|
59 |
Args:
|
60 |
message (str): The input message.
|
61 |
history (list): The conversation history used by ChatInterface.
|
62 |
temperature (float): The temperature for generating the response.
|
|
|
63 |
max_new_tokens (int): The maximum number of new tokens to generate.
|
64 |
system_prompt (str): The system prompt to guide the assistant's behavior.
|
65 |
Returns:
|
|
|
67 |
"""
|
68 |
conversation = []
|
69 |
|
70 |
+
# Include system prompt at the beginning if provided
|
71 |
if system_prompt:
|
72 |
+
conversation.append({"role": "system", "content": system_prompt})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
+
for user, assistant in history:
|
75 |
+
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
|
76 |
+
|
77 |
+
conversation.append({"role": "user", "content": message})
|
|
|
78 |
|
79 |
+
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device)
|
80 |
+
|
81 |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
82 |
|
83 |
generate_kwargs = dict(
|
84 |
input_ids=input_ids,
|
|
|
85 |
streamer=streamer,
|
86 |
max_new_tokens=max_new_tokens,
|
87 |
do_sample=True,
|
88 |
temperature=temperature,
|
|
|
|
|
89 |
eos_token_id=terminators,
|
90 |
)
|
91 |
|
|
|
115 |
)
|
116 |
|
117 |
gr.ChatInterface(
|
118 |
+
fn=chat_llama3_8b,
|
119 |
chatbot=chatbot,
|
120 |
fill_height=True,
|
121 |
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
|
122 |
additional_inputs=[
|
123 |
system_prompt_input,
|
124 |
gr.Slider(minimum=0, maximum=1, step=0.1, value=0.8, label="Temperature", render=False),
|
|
|
125 |
gr.Slider(minimum=128, maximum=4096, step=1, value=4096, label="Max new tokens", render=False),
|
126 |
],
|
127 |
examples=[
|
128 |
+
['Are you a sentient being?']
|
|
|
|
|
|
|
|
|
129 |
],
|
130 |
cache_examples=False
|
131 |
)
|