File size: 3,928 Bytes
6f8934c
 
 
 
 
 
 
 
 
 
 
47dded2
6f8934c
 
 
 
 
 
 
 
 
 
47dded2
6f8934c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47dded2
 
f1d7efb
6f8934c
 
 
 
 
 
47dded2
 
 
 
 
6f8934c
69d0c7f
6f8934c
 
 
 
 
69d0c7f
6f8934c
 
 
 
69d0c7f
47dded2
69d0c7f
47dded2
6f8934c
47dded2
 
 
 
f1d7efb
47dded2
 
6f8934c
 
 
69d0c7f
6f8934c
 
 
 
 
 
69d0c7f
6f8934c
 
 
 
 
 
 
 
 
 
 
 
 
69d0c7f
6f8934c
 
 
 
69d0c7f
 
 
 
 
 
 
6f8934c
47dded2
6f8934c
 
 
 
69d0c7f
 
 
 
6f8934c
47dded2
69d0c7f
f1d7efb
69d0c7f
 
6f8934c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import gradio as gr
import os
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread

# Set an environment variable
HF_TOKEN = os.environ.get("HF_TOKEN", None)

DESCRIPTION = '''
<div>
<h1 style="text-align: center;">Mistral Chat</h1>
</div>
'''

LICENSE = """
<p/>
---
"""

PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
   <h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">Mistral Chat 8B</h1>
   <p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me anything...</p>
</div>
"""

css = """
h1 {
  text-align: center;
  display: block;
}

#duplicate-button {
  margin: auto;
  color: white;
  background: #1565c0;
  border-radius: 100vh;
}
"""

# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("Orenguteng/Llama-3-8B-Lexi-Uncensored")
model = AutoModelForCausalLM.from_pretrained("Orenguteng/Llama-3-8B-Lexi-Uncensored", device_map="auto")

terminators = [
    tokenizer.eos_token_id,
    tokenizer.convert_tokens_to_ids("<|eot_id|>")
]

@spaces.GPU(duration=120)
def chat_llama3_8b(message: str, 
                    history: list, 
                    temperature: float, 
                    max_new_tokens: int,
                    system_prompt: str) -> str:
    """
    Generate a streaming response using the Mistral-8B model.
    Args:
        message (str): The input message.
        history (list): The conversation history used by ChatInterface.
        temperature (float): The temperature for generating the response.
        max_new_tokens (int): The maximum number of new tokens to generate.
        system_prompt (str): The system prompt to guide the assistant's behavior.
    Returns:
        str: The generated response.
    """
    conversation = []

    # Include system prompt at the beginning if provided
    if system_prompt:
        conversation.append({"role": "system", "content": system_prompt})

    for user, assistant in history:
        conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
    
    conversation.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device)
    
    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)

    generate_kwargs = dict(
        input_ids=input_ids,
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        temperature=temperature,
        eos_token_id=terminators,
    )

    if temperature == 0:
        generate_kwargs['do_sample'] = False
        
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)
        

# Gradio block
chatbot = gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')

with gr.Blocks(fill_height=True, css=css) as demo:
    
    gr.Markdown(DESCRIPTION)

    system_prompt_input = gr.Textbox(
        label="System Prompt",
        placeholder="Enter system instructions for the model...",
        lines=2
    )

    gr.ChatInterface(
        fn=chat_llama3_8b,
        chatbot=chatbot,
        fill_height=True,
        additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
        additional_inputs=[
            system_prompt_input,
            gr.Slider(minimum=0, maximum=1, step=0.1, value=0.8, label="Temperature", render=False),
            gr.Slider(minimum=128, maximum=4096, step=1, value=4096, label="Max new tokens", render=False),
        ],
        examples=[
            ['Are you a sentient being?']
        ],
        cache_examples=False
    )

if __name__ == "__main__":
    demo.launch()