File size: 877 Bytes
8c8a42e
 
 
 
 
88fc775
8c8a42e
 
6faffce
8c8a42e
 
 
 
 
 
ed38d84
9c7a553
 
 
 
8c8a42e
 
95ea504
2e0ec63
 
0b22b77
6faffce
 
29ea107
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import gradio as gr
import torch
import numpy as np
import modin.pandas as pd
from PIL import Image
from diffusers import StableVideoDiffusionPipeline
from huggingface_hub import login
import os


token = os.environ['HF_TOKEN']
login(token=token)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
torch.cuda.max_memory_allocated(device=device)
torch.cuda.empty_cache()
pipe = StableVideoDiffusionPipeline.from_pretrained("stabilityai/stable-video-diffusion-img2vid")
#pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
pipe.enable_xformers_memory_efficient_attention()
pipe = pipe.to(device)
torch.cuda.empty_cache()



def genie(src_image):
    frames = pipe(image=src_image).images[0]
    torch.cuda.empty_cache()
    return frames
    
gr.Interface(fn=genie, inputs=gr.Image(type="pil"), outputs=gr.Video()).launch(debug=True, max_threads=80)