Manjushri commited on
Commit
8c8a42e
·
verified ·
1 Parent(s): 11a0cad

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +110 -0
app.py ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ import numpy as np
4
+ import modin.pandas as pd
5
+ from PIL import Image
6
+ from diffusers import DiffusionPipeline
7
+ from huggingface_hub import login
8
+ import os
9
+ from glob import glob
10
+ from pathlib import Path
11
+ from typing import Optional
12
+ import uuid
13
+ import random
14
+
15
+ token = os.environ['HF_TOKEN']
16
+ login(token=token)
17
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
18
+ torch.cuda.max_memory_allocated(device=device)
19
+ torch.cuda.empty_cache()
20
+ pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-video-diffusion-img2vid-xt-1-1")
21
+ #pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
22
+
23
+ pipe.enable_xformers_memory_efficient_attention()
24
+ pipe = pipe.to(device)
25
+ torch.cuda.empty_cache()
26
+
27
+ max_64_bit_int = 2**63 - 1
28
+
29
+ def sample(
30
+ image: Image,
31
+ seed: Optional[int] = 42,
32
+ randomize_seed: bool = True,
33
+ motion_bucket_id: int = 127,
34
+ fps_id: int = 6,
35
+ version: str = "svd_xt_1-1",
36
+ cond_aug: float = 0.02,
37
+ decoding_t: int = 3, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
38
+ device: str = "cuda",
39
+ output_folder: str = "outputs",):
40
+
41
+ if image.mode == "RGBA":
42
+ image = image.convert("RGB")
43
+
44
+ if(randomize_seed):
45
+ seed = random.randint(0, max_64_bit_int)
46
+ generator = torch.manual_seed(seed)
47
+ torch.cuda.empty_cache()
48
+ os.makedirs(output_folder, exist_ok=True)
49
+ base_count = len(glob(os.path.join(output_folder, "*.mp4")))
50
+ video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
51
+
52
+ frames = pipe(image, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=0.1, num_frames=25).frames[0]
53
+ export_to_video(frames, video_path, fps=fps_id)
54
+ torch.manual_seed(seed)
55
+ torch.cuda.empty_cache()
56
+ return video_path, seed
57
+
58
+ def resize_image(image, output_size=(1024, 578)):
59
+ # Calculate aspect ratios
60
+ target_aspect = output_size[0] / output_size[1] # Aspect ratio of the desired size
61
+ image_aspect = image.width / image.height # Aspect ratio of the original image
62
+
63
+ # Resize then crop if the original image is larger
64
+ if image_aspect > target_aspect:
65
+ # Resize the image to match the target height, maintaining aspect ratio
66
+ new_height = output_size[1]
67
+ new_width = int(new_height * image_aspect)
68
+ resized_image = image.resize((new_width, new_height), Image.LANCZOS)
69
+ # Calculate coordinates for cropping
70
+ left = (new_width - output_size[0]) / 2
71
+ top = 0
72
+ right = (new_width + output_size[0]) / 2
73
+ bottom = output_size[1]
74
+ else:
75
+ # Resize the image to match the target width, maintaining aspect ratio
76
+ new_width = output_size[0]
77
+ new_height = int(new_width / image_aspect)
78
+ resized_image = image.resize((new_width, new_height), Image.LANCZOS)
79
+ # Calculate coordinates for cropping
80
+ left = 0
81
+ top = (new_height - output_size[1]) / 2
82
+ right = output_size[0]
83
+ bottom = (new_height + output_size[1]) / 2
84
+
85
+ # Crop the image
86
+ cropped_image = resized_image.crop((left, top, right, bottom))
87
+ torch.cuda.empty_cache()
88
+ return cropped_image
89
+
90
+ with gr.Blocks() as demo:
91
+ #gr.Markdown('''# Community demo for Stable Video Diffusion - Img2Vid - XT ([model](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt), [paper](https://stability.ai/research/stable-video-diffusion-scaling-latent-video-diffusion-models-to-large-datasets), [stability's ui waitlist](https://stability.ai/contact))
92
+ #### Research release ([_non-commercial_](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt/blob/main/LICENSE)): generate `4s` vid from a single image at (`25 frames` at `6 fps`). this demo uses [🧨 diffusers for low VRAM and fast generation](https://huggingface.co/docs/diffusers/main/en/using-diffusers/svd).
93
+ #''')
94
+ with gr.Row():
95
+ with gr.Column():
96
+ image = gr.Image(label="Upload your image", type="pil")
97
+ generate_btn = gr.Button("Generate")
98
+ video = gr.Video()
99
+ with gr.Accordion("Advanced options", open=False):
100
+ seed = gr.Slider(label="Seed", value=42, randomize=True, minimum=0, maximum=max_64_bit_int, step=1)
101
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
102
+ motion_bucket_id = gr.Slider(label="Motion bucket id", info="Controls how much motion to add/remove from the image", value=127, minimum=1, maximum=255)
103
+ fps_id = gr.Slider(label="Frames per second", info="The length of your video in seconds will be 25/fps", value=6, minimum=5, maximum=30)
104
+
105
+ image.upload(fn=resize_image, inputs=image, outputs=image, queue=False)
106
+ generate_btn.click(fn=sample, inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id], outputs=[video, seed], api_name="video",)# inputs=image, outputs=[video, seed], fn=sample, cache_examples=True,)
107
+
108
+ if __name__ == "__main__":
109
+ demo.queue(max_size=20, api_open=False)
110
+ demo.launch(show_api=False)