Manjushri commited on
Commit
6faffce
·
verified ·
1 Parent(s): cd767cf

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -90
app.py CHANGED
@@ -6,11 +6,7 @@ from PIL import Image
6
  from diffusers import DiffusionPipeline
7
  from huggingface_hub import login
8
  import os
9
- from glob import glob
10
- from pathlib import Path
11
- from typing import Optional
12
- import uuid
13
- import random
14
 
15
  token = os.environ['HF_TOKEN']
16
  login(token=token)
@@ -21,90 +17,11 @@ pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-video-diffusion-img
21
  #pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
22
 
23
  pipe.enable_xformers_memory_efficient_attention()
24
- pipe.enable_model_cpu_offload()
25
  torch.cuda.empty_cache()
26
 
27
- max_64_bit_int = 2**63 - 1
28
-
29
- def sample(
30
- image: Image,
31
- seed: Optional[int] = 42,
32
- randomize_seed: bool = True,
33
- motion_bucket_id: int = 127,
34
- fps_id: int = 6,
35
- version: str = "svd_xt_1-1",
36
- cond_aug: float = 0.02,
37
- decoding_t: int = 3, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
38
- device: str = "cuda",
39
- output_folder: str = "outputs",):
40
-
41
- if image.mode == "RGBA":
42
- image = image.convert("RGB")
43
-
44
- if(randomize_seed):
45
- seed = random.randint(0, max_64_bit_int)
46
- generator = torch.manual_seed(seed)
47
- torch.cuda.empty_cache()
48
- os.makedirs(output_folder, exist_ok=True)
49
- base_count = len(glob(os.path.join(output_folder, "*.mp4")))
50
- video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
51
-
52
- frames = pipe(image, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=0.1, num_frames=25).frames[0]
53
- export_to_video(frames, video_path, fps=fps_id)
54
- torch.manual_seed(seed)
55
- torch.cuda.empty_cache()
56
- return video_path, seed
57
-
58
- def resize_image(image, output_size=(1024, 578)):
59
- # Calculate aspect ratios
60
- target_aspect = output_size[0] / output_size[1] # Aspect ratio of the desired size
61
- image_aspect = image.width / image.height # Aspect ratio of the original image
62
-
63
- # Resize then crop if the original image is larger
64
- if image_aspect > target_aspect:
65
- # Resize the image to match the target height, maintaining aspect ratio
66
- new_height = output_size[1]
67
- new_width = int(new_height * image_aspect)
68
- resized_image = image.resize((new_width, new_height), Image.LANCZOS)
69
- # Calculate coordinates for cropping
70
- left = (new_width - output_size[0]) / 2
71
- top = 0
72
- right = (new_width + output_size[0]) / 2
73
- bottom = output_size[1]
74
- else:
75
- # Resize the image to match the target width, maintaining aspect ratio
76
- new_width = output_size[0]
77
- new_height = int(new_width / image_aspect)
78
- resized_image = image.resize((new_width, new_height), Image.LANCZOS)
79
- # Calculate coordinates for cropping
80
- left = 0
81
- top = (new_height - output_size[1]) / 2
82
- right = output_size[0]
83
- bottom = (new_height + output_size[1]) / 2
84
-
85
- # Crop the image
86
- cropped_image = resized_image.crop((left, top, right, bottom))
87
- torch.cuda.empty_cache()
88
- return cropped_image
89
-
90
- with gr.Blocks() as demo:
91
- #gr.Markdown('''# Community demo for Stable Video Diffusion - Img2Vid - XT ([model](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt), [paper](https://stability.ai/research/stable-video-diffusion-scaling-latent-video-diffusion-models-to-large-datasets), [stability's ui waitlist](https://stability.ai/contact))
92
- #### Research release ([_non-commercial_](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt/blob/main/LICENSE)): generate `4s` vid from a single image at (`25 frames` at `6 fps`). this demo uses [🧨 diffusers for low VRAM and fast generation](https://huggingface.co/docs/diffusers/main/en/using-diffusers/svd).
93
- #''')
94
- with gr.Row():
95
- with gr.Column():
96
- image = gr.Image(label="Upload your image", type="pil")
97
- generate_btn = gr.Button("Generate")
98
- video = gr.Video()
99
- with gr.Accordion("Advanced options", open=False):
100
- seed = gr.Slider(label="Seed", value=42, randomize=True, minimum=0, maximum=max_64_bit_int, step=1)
101
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
102
- motion_bucket_id = gr.Slider(label="Motion bucket id", info="Controls how much motion to add/remove from the image", value=127, minimum=1, maximum=255)
103
- fps_id = gr.Slider(label="Frames per second", info="The length of your video in seconds will be 25/fps", value=6, minimum=5, maximum=30)
104
-
105
- image.upload(fn=resize_image, inputs=image, outputs=image, queue=False)
106
- generate_btn.click(fn=sample, inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id], outputs=[video, seed], api_name="video",)# inputs=image, outputs=[video, seed], fn=sample, cache_examples=True,)
107
-
108
- if __name__ == "__main__":
109
- demo.queue(max_size=20, api_open=False)
110
- demo.launch(show_api=False)
 
6
  from diffusers import DiffusionPipeline
7
  from huggingface_hub import login
8
  import os
9
+
 
 
 
 
10
 
11
  token = os.environ['HF_TOKEN']
12
  login(token=token)
 
17
  #pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
18
 
19
  pipe.enable_xformers_memory_efficient_attention()
20
+ pipe = pipe.to(device)
21
  torch.cuda.empty_cache()
22
 
23
+ def genie(image):
24
+ frames = pipe(image).images[0]
25
+ return frames
26
+
27
+ gr.Interface(fn=genie, inputs='image', outputs=gr.Video()).launch(debug=True, max_threads=80)