Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,11 +6,7 @@ from PIL import Image
|
|
| 6 |
from diffusers import DiffusionPipeline
|
| 7 |
from huggingface_hub import login
|
| 8 |
import os
|
| 9 |
-
|
| 10 |
-
from pathlib import Path
|
| 11 |
-
from typing import Optional
|
| 12 |
-
import uuid
|
| 13 |
-
import random
|
| 14 |
|
| 15 |
token = os.environ['HF_TOKEN']
|
| 16 |
login(token=token)
|
|
@@ -21,90 +17,11 @@ pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-video-diffusion-img
|
|
| 21 |
#pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
| 22 |
|
| 23 |
pipe.enable_xformers_memory_efficient_attention()
|
| 24 |
-
pipe.
|
| 25 |
torch.cuda.empty_cache()
|
| 26 |
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
randomize_seed: bool = True,
|
| 33 |
-
motion_bucket_id: int = 127,
|
| 34 |
-
fps_id: int = 6,
|
| 35 |
-
version: str = "svd_xt_1-1",
|
| 36 |
-
cond_aug: float = 0.02,
|
| 37 |
-
decoding_t: int = 3, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
|
| 38 |
-
device: str = "cuda",
|
| 39 |
-
output_folder: str = "outputs",):
|
| 40 |
-
|
| 41 |
-
if image.mode == "RGBA":
|
| 42 |
-
image = image.convert("RGB")
|
| 43 |
-
|
| 44 |
-
if(randomize_seed):
|
| 45 |
-
seed = random.randint(0, max_64_bit_int)
|
| 46 |
-
generator = torch.manual_seed(seed)
|
| 47 |
-
torch.cuda.empty_cache()
|
| 48 |
-
os.makedirs(output_folder, exist_ok=True)
|
| 49 |
-
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
|
| 50 |
-
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
|
| 51 |
-
|
| 52 |
-
frames = pipe(image, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=0.1, num_frames=25).frames[0]
|
| 53 |
-
export_to_video(frames, video_path, fps=fps_id)
|
| 54 |
-
torch.manual_seed(seed)
|
| 55 |
-
torch.cuda.empty_cache()
|
| 56 |
-
return video_path, seed
|
| 57 |
-
|
| 58 |
-
def resize_image(image, output_size=(1024, 578)):
|
| 59 |
-
# Calculate aspect ratios
|
| 60 |
-
target_aspect = output_size[0] / output_size[1] # Aspect ratio of the desired size
|
| 61 |
-
image_aspect = image.width / image.height # Aspect ratio of the original image
|
| 62 |
-
|
| 63 |
-
# Resize then crop if the original image is larger
|
| 64 |
-
if image_aspect > target_aspect:
|
| 65 |
-
# Resize the image to match the target height, maintaining aspect ratio
|
| 66 |
-
new_height = output_size[1]
|
| 67 |
-
new_width = int(new_height * image_aspect)
|
| 68 |
-
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
| 69 |
-
# Calculate coordinates for cropping
|
| 70 |
-
left = (new_width - output_size[0]) / 2
|
| 71 |
-
top = 0
|
| 72 |
-
right = (new_width + output_size[0]) / 2
|
| 73 |
-
bottom = output_size[1]
|
| 74 |
-
else:
|
| 75 |
-
# Resize the image to match the target width, maintaining aspect ratio
|
| 76 |
-
new_width = output_size[0]
|
| 77 |
-
new_height = int(new_width / image_aspect)
|
| 78 |
-
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
| 79 |
-
# Calculate coordinates for cropping
|
| 80 |
-
left = 0
|
| 81 |
-
top = (new_height - output_size[1]) / 2
|
| 82 |
-
right = output_size[0]
|
| 83 |
-
bottom = (new_height + output_size[1]) / 2
|
| 84 |
-
|
| 85 |
-
# Crop the image
|
| 86 |
-
cropped_image = resized_image.crop((left, top, right, bottom))
|
| 87 |
-
torch.cuda.empty_cache()
|
| 88 |
-
return cropped_image
|
| 89 |
-
|
| 90 |
-
with gr.Blocks() as demo:
|
| 91 |
-
#gr.Markdown('''# Community demo for Stable Video Diffusion - Img2Vid - XT ([model](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt), [paper](https://stability.ai/research/stable-video-diffusion-scaling-latent-video-diffusion-models-to-large-datasets), [stability's ui waitlist](https://stability.ai/contact))
|
| 92 |
-
#### Research release ([_non-commercial_](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt/blob/main/LICENSE)): generate `4s` vid from a single image at (`25 frames` at `6 fps`). this demo uses [🧨 diffusers for low VRAM and fast generation](https://huggingface.co/docs/diffusers/main/en/using-diffusers/svd).
|
| 93 |
-
#''')
|
| 94 |
-
with gr.Row():
|
| 95 |
-
with gr.Column():
|
| 96 |
-
image = gr.Image(label="Upload your image", type="pil")
|
| 97 |
-
generate_btn = gr.Button("Generate")
|
| 98 |
-
video = gr.Video()
|
| 99 |
-
with gr.Accordion("Advanced options", open=False):
|
| 100 |
-
seed = gr.Slider(label="Seed", value=42, randomize=True, minimum=0, maximum=max_64_bit_int, step=1)
|
| 101 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 102 |
-
motion_bucket_id = gr.Slider(label="Motion bucket id", info="Controls how much motion to add/remove from the image", value=127, minimum=1, maximum=255)
|
| 103 |
-
fps_id = gr.Slider(label="Frames per second", info="The length of your video in seconds will be 25/fps", value=6, minimum=5, maximum=30)
|
| 104 |
-
|
| 105 |
-
image.upload(fn=resize_image, inputs=image, outputs=image, queue=False)
|
| 106 |
-
generate_btn.click(fn=sample, inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id], outputs=[video, seed], api_name="video",)# inputs=image, outputs=[video, seed], fn=sample, cache_examples=True,)
|
| 107 |
-
|
| 108 |
-
if __name__ == "__main__":
|
| 109 |
-
demo.queue(max_size=20, api_open=False)
|
| 110 |
-
demo.launch(show_api=False)
|
|
|
|
| 6 |
from diffusers import DiffusionPipeline
|
| 7 |
from huggingface_hub import login
|
| 8 |
import os
|
| 9 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
token = os.environ['HF_TOKEN']
|
| 12 |
login(token=token)
|
|
|
|
| 17 |
#pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
| 18 |
|
| 19 |
pipe.enable_xformers_memory_efficient_attention()
|
| 20 |
+
pipe = pipe.to(device)
|
| 21 |
torch.cuda.empty_cache()
|
| 22 |
|
| 23 |
+
def genie(image):
|
| 24 |
+
frames = pipe(image).images[0]
|
| 25 |
+
return frames
|
| 26 |
+
|
| 27 |
+
gr.Interface(fn=genie, inputs='image', outputs=gr.Video()).launch(debug=True, max_threads=80)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|