File size: 10,513 Bytes
aa37927 8767411 64f6484 8355c4d 64f6484 8767411 8355c4d aa37927 e1da145 64f6484 8767411 8355c4d aa37927 8355c4d 8767411 8355c4d 64f6484 8355c4d 64f6484 8355c4d 8767411 64f6484 8767411 64f6484 8767411 8355c4d 64f6484 8767411 aa37927 8355c4d e1da145 8355c4d e1da145 8355c4d e1da145 8355c4d 64f6484 e1da145 8355c4d 64f6484 8355c4d e1da145 8355c4d aa37927 64f6484 e1da145 8355c4d e1da145 8355c4d e1da145 8355c4d e1da145 8355c4d e1da145 64f6484 8355c4d 64f6484 8355c4d 64f6484 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
import gradio as gr
import pandas as pd
import os
import json
from src.populate import get_leaderboard_df
from src.display.utils import COLUMNS, COLS, BENCHMARK_COLS, EVAL_COLS
from src.envs import EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH
# Print paths for debugging
print(f"EVAL_RESULTS_PATH: {EVAL_RESULTS_PATH}")
print(f"EVAL_REQUESTS_PATH: {EVAL_REQUESTS_PATH}")
# Minimal CSS
minimal_css = """
.container {
max-width: 1200px;
margin: 0 auto;
}
.header {
text-align: center;
margin-bottom: 20px;
}
"""
# Function to load data directly from JSON files
def load_data_directly():
if not os.path.exists(EVAL_RESULTS_PATH):
print(f"Path does not exist: {EVAL_RESULTS_PATH}")
return pd.DataFrame()
result_files = [
os.path.join(EVAL_RESULTS_PATH, f)
for f in os.listdir(EVAL_RESULTS_PATH)
if f.endswith('.json')
]
print(f"Found {len(result_files)} JSON files")
data_list = []
for file in result_files:
try:
with open(file, 'r') as f:
data = json.load(f)
flattened_data = {}
# Extract both config and results
flattened_data.update(data.get('config', {}))
flattened_data.update(data.get('results', {}))
data_list.append(flattened_data)
except Exception as e:
print(f"Error loading file {file}: {e}")
if not data_list:
print("No data loaded from JSON files")
return pd.DataFrame()
df = pd.DataFrame(data_list)
print(f"Successfully loaded DataFrame with shape: {df.shape}")
return df
# Try to load data using both methods
try:
print("Attempting to load data using get_leaderboard_df...")
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
print(f"get_leaderboard_df result shape: {LEADERBOARD_DF.shape}")
# If that fails or returns empty, try direct loading
if LEADERBOARD_DF.empty:
print("get_leaderboard_df returned empty DataFrame, trying direct loading...")
LEADERBOARD_DF = load_data_directly()
# If still empty, create a sample
if LEADERBOARD_DF.empty:
print("Both methods returned empty DataFrames, creating sample data")
LEADERBOARD_DF = pd.DataFrame([{
"model_name": "Sample Model",
"average": 75.5,
"model_type": "Encoder",
"precision": "float16"
}])
except Exception as e:
print(f"Error in data loading: {e}")
# Create a minimal DataFrame
LEADERBOARD_DF = pd.DataFrame([{
"model_name": "Error Loading Data",
"average": 0
}])
# Print final DataFrame info
print(f"Final DataFrame shape: {LEADERBOARD_DF.shape}")
print(f"Final DataFrame columns: {LEADERBOARD_DF.columns.tolist()}")
# Select important columns for display
display_cols = ["model_name", "average", "model_type", "precision", "weight_type", "license"]
# Add some subject columns
subject_cols = [
"abstract_algebra", "anatomy", "astronomy", "business_ethics",
"college_biology", "college_chemistry", "college_computer_science",
"high_school_mathematics", "machine_learning"
]
# Add all detected subject columns
for col in LEADERBOARD_DF.columns:
if col not in display_cols and col not in ["submitted_time", "revision", "base_model", "likes", "params"]:
subject_cols.append(col)
# Combine columns, filtering to only those that exist
all_display_cols = display_cols + subject_cols
actual_display_cols = [col for col in all_display_cols if col in LEADERBOARD_DF.columns]
# Ensure we have at least some columns
if not actual_display_cols and not LEADERBOARD_DF.empty:
actual_display_cols = LEADERBOARD_DF.columns.tolist()
# Filter the DataFrame
if not LEADERBOARD_DF.empty:
display_df = LEADERBOARD_DF[actual_display_cols].copy()
# Round numeric columns for display
for col in display_df.columns:
if pd.api.types.is_numeric_dtype(display_df[col]):
display_df[col] = display_df[col].round(2)
# Sort by average if it exists
if "average" in display_df.columns:
display_df = display_df.sort_values(by="average", ascending=False)
else:
display_df = LEADERBOARD_DF
# Create the app
with gr.Blocks(css=minimal_css) as demo:
gr.HTML("<div class='header'><h1>ILMAAM: Index for Language Models for Arabic Assessment on Multitasks</h1></div>")
with gr.Tabs() as tabs:
with gr.TabItem("LLM Benchmark"):
# Add debug output
with gr.Accordion("Debug Info", open=True):
gr.Markdown(f"DataFrame Shape: {display_df.shape}")
gr.Markdown(f"Column Names: {', '.join(display_df.columns[:10])}" + ("..." if len(display_df.columns) > 10 else ""))
# Use standard DataTable
datatable = gr.DataFrame(
value=display_df,
interactive=False,
wrap=True
)
# Add filter functionality using dropdowns
with gr.Row():
if "model_type" in display_df.columns and not display_df.empty:
model_types = ["All"] + sorted(display_df["model_type"].dropna().unique().tolist())
model_type_filter = gr.Dropdown(
choices=model_types,
value="All",
label="Filter by Model Type",
interactive=True
)
if "precision" in display_df.columns and not display_df.empty:
precisions = ["All"] + sorted(display_df["precision"].dropna().unique().tolist())
precision_filter = gr.Dropdown(
choices=precisions,
value="All",
label="Filter by Precision",
interactive=True
)
search_input = gr.Textbox(
label="Search by Model Name",
placeholder="Enter model name...",
interactive=True
)
# Filter function
def filter_data(model_type, precision, search):
filtered_df = display_df.copy()
if model_type != "All" and "model_type" in filtered_df.columns:
filtered_df = filtered_df[filtered_df["model_type"] == model_type]
if precision != "All" and "precision" in filtered_df.columns:
filtered_df = filtered_df[filtered_df["precision"] == precision]
if search and "model_name" in filtered_df.columns:
filtered_df = filtered_df[filtered_df["model_name"].str.contains(search, case=False)]
return filtered_df
# Connect filters
filter_inputs = []
if "model_type" in display_df.columns and not display_df.empty:
filter_inputs.append(model_type_filter)
if "precision" in display_df.columns and not display_df.empty:
filter_inputs.append(precision_filter)
filter_inputs.append(search_input)
# If we have filter inputs, connect them
if filter_inputs:
for input_component in filter_inputs:
input_component.change(
filter_data,
inputs=filter_inputs,
outputs=datatable
)
with gr.TabItem("About"):
gr.Markdown("""
# About ILMAAM
The **Index for Language Models for Arabic Assessment on Multitasks (ILMAAM)** showcases the performance of various Arabic LLMs on the newly released MMMLU OpenAI Benchmark across different subjects.
This benchmark evaluates language models specifically for Arabic language capabilities.
""")
with gr.TabItem("Submit"):
gr.Markdown("""
# Submit Your Model
You can submit your Arabic language model for benchmark evaluation. Fill out the form below:
""")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
model_type = gr.Dropdown(
choices=["Encoder", "Decoder"],
label="Model type",
multiselect=False,
interactive=True
)
with gr.Column():
precision = gr.Dropdown(
choices=["float16", "float32", "int8", "int4"],
label="Precision",
multiselect=False,
value="float16",
interactive=True
)
weight_type = gr.Dropdown(
choices=["Original", "Quantized", "Distilled"],
label="Weights type",
multiselect=False,
value="Original",
interactive=True
)
base_model_name_textbox = gr.Textbox(label="Base model (if applicable)")
submit_button = gr.Button("Submit for Evaluation")
submission_result = gr.Markdown()
def mock_submission(model_name, base_model, revision, precision, weight_type, model_type):
if not model_name:
return "Error: Model name is required."
return f"Model '{model_name}' submitted successfully! It will be evaluated soon."
submit_button.click(
mock_submission,
[
model_name_textbox,
base_model_name_textbox,
revision_name_textbox,
precision,
weight_type,
model_type,
],
submission_result,
)
demo.launch(debug=True, share=False) |