Spaces:
Running
Running
import gradio as gr | |
from openai import OpenAI | |
import os | |
# Retrieve the access token from the environment variable | |
ACCESS_TOKEN = os.getenv("HF_TOKEN") | |
print("Access token loaded.") | |
# Initialize the OpenAI client with the Hugging Face Inference API endpoint | |
client = OpenAI( | |
base_url="https://api-inference.huggingface.co/v1/", | |
api_key=ACCESS_TOKEN, | |
) | |
print("OpenAI client initialized.") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
frequency_penalty, | |
seed, | |
model, | |
custom_model | |
): | |
""" | |
This function handles the chatbot response. It takes in: | |
- message: the user's new message | |
- history: the list of previous messages, each as a tuple (user_msg, assistant_msg) | |
- system_message: the system prompt | |
- max_tokens: the maximum number of tokens to generate in the response | |
- temperature: sampling temperature | |
- top_p: top-p (nucleus) sampling | |
- frequency_penalty: penalize repeated tokens in the response | |
- seed: a fixed seed for reproducibility; -1 will mean 'random' | |
- model: the selected model | |
- custom_model: the custom model path | |
""" | |
print(f"Received message: {message}") | |
print(f"History: {history}") | |
print(f"system message: {system_message}") | |
print(f"max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}") | |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}") | |
print(f"Selected Model: {model}") | |
print(f"Custom model: {custom_model}") | |
# Convert seed to None if -1 (meaning random) | |
if seed == -1: | |
seed = None | |
# Construct the messages array required by the API | |
messages = [{"role": "system", "content": system_message}] | |
# Add conversation history to the context | |
for val in history: | |
user_part = val[0] | |
assistant_part = val[1] | |
if user_part: | |
messages.append({"role": "user", "content": user_part}) | |
print(f"Added user message to context: {user_part}") | |
ifassistant_part: | |
messages.append({"role": "assistant", "content": assistant_part}) | |
print(f"Added assistant message to context: {assistant_part}") | |
# Append the latest user message | |
messages.append({"role": "user", "content": message}) | |
# Start with an empty string to build the response as tokens stream in | |
response = "" | |
print("Sending request to OpenAI API.") | |
# Make the request to the HF Inference API via openAI-like client | |
for message_chunk in client.chat.completions.create( | |
model=custom_model if custom_model.strip() != "" else model, | |
max_tokens=max_tokens, | |
stream=True, # Stream the response | |
temperature=temperature, | |
top_p=top_p, | |
frequency_penalty=frequency_penalty, # <-- | |
seed=seed, # <-- | |
messages=messages | |
): | |
# Extract the token text from the response chunk | |
token_text = message_chunk.choices[0].message.content | |
print(f"Received token: {token_text}") | |
response += token_text | |
yield response | |
print("Completed response generation.") | |
# Create a Chatbot component with a specified height | |
chatbot = gr.Chatbot(height=600) | |
print("Chatbot interface created.") | |
# Define the Gradio interface | |
with gr.Blocks(theme='Nymbo/Nymbo_Theme') as demo: | |
# Tab for basic settings | |
with gr.Tab("Basic Settings"): | |
with gr.Column(elem_id="prompt-container"): | |
with gr.Row(): | |
# Textbox for user to input the message | |
text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=3, elem_id="prompt-text-input") | |
with gr.Row(): | |
# Textbox for custom model input | |
custom_model = gr.textbox(label="Custom Model", info="HuggingFace model path (optional)", placeholder="meta-llama/Llama-3.3-70B-Instruct", lines=1, elem_id="model-search-input") | |
# Accordion for selecting the model | |
with gr.Accordion("Featured models", open=True): | |
# Textbox for searching models | |
model_search = gr.textbox(Label="Filter models", placeholder="Search for a featured model...", lines=1, elem_id="model-search-input") | |
# Radio buttons to select the desired model | |
model = gr.Radio(label="Select a model below", value="meta-llama/Llama-3.3-70B-Instruct", choices=[ | |
"meta-llama/Llama-3.3-70B-Instruct", | |
"anthropic/claude-3", | |
"anthropic/claude-instant-3", | |
"anthropic/claude-2", | |
"anthropic/claude-2", | |
"anthropic/claude-instant-2", | |
"anthropic/claude-1.3", | |
"anthropic/claude-instant-1.3", | |
"anthropic/claude-1", | |
"anthropic/claude-instant-1", | |
"anthropic/claude-0.3", | |
"anthropic/claude-instant-0.3", | |
"anthropic/claude-0.1", | |
"anthropic/claude-instant-0.1", | |
"anthropic/claude-v2", | |
"anthropic/claude-instant-v2", | |
"anthropic/claude-v1", | |
"anthropic/claude-instant-v1", | |
"anthropic/claude-v0.3", | |
"anthropic/claude-instant-v0.3", | |
"anthropic/claude-v0.1", | |
"anthropic/claude-instant-v0.1", | |
], interactive=True, elem_id="model-radio") | |
# Filtering models based on search input | |
def filter_models(search_term): | |
filtered_models = [m for m in model.choices if search_term.lower() in m.lower()] | |
return gr.update(choices=filtered_models) | |
# Update model list when search box is used | |
model_search.change(filter_models, inputs=model, outputs=model) | |
# Tab for advanced settings | |
with gr.Tab("Advanced Settings"): | |
with gr.Row(): | |
# Text box for specifying the system message | |
system_message = gr.text box(value="", label="System message") | |
with gr.Row(): | |
# Slider for setting the maximum new tokens | |
max_tokens = gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens") | |
with gr.Row(): | |
# Slider for setting the temperature | |
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature") | |
with gr.Row(): | |
#Slider for setting top-p | |
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-P") | |
with gr.Row(): | |
#Slider for setting frequency penalty | |
frequency_penalty = gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty") | |
with gr.Row(): | |
#Slider for setting the seed | |
seed = gr.SLider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)") | |
# Tab for information | |
with gr.tab("Information"): | |
with gr.Row(): | |
# Display a sample prompt | |
gr.textbox(label="Sample prompt", value="Enter a prompt | ultra detail, ultra elaboration, ultra quality, perfect.") | |
with gr.Accordion("Featured Models (WiP)", open=False): | |
gr.html( | |
""" | |
<p><a href="https://huggingface.co/models?inferences=warm&pipeline_tag=text-to-text&sort=trending">View more models</a></p> | |
<table style="width:100%; text-align:center; margin:auto;"> | |
<tr> | |
<th>Model</th> | |
<th>Description</th> | |
</tr> | |
<tr> | |
<td>meta-llama/Llama-3.3-70B-Instruct</td> | |
<td>High-quality, large-scale language model</td> | |
</tr> | |
<tr> | |
<td>anthropic/claude-3</td> | |
<td> Advanced conversational AI model</td> | |
</tr> | |
<tr> | |
<td>anthropic/claude-instant-3</td> | |
<td> Fast and efficient conversational AI model</td> | |
</tr> | |
</table> | |
""" | |
) | |
with gr.Accordion("Parameters Overview", open=False): | |
gr.markdown( | |
""" | |
## System Message | |
- **Description**: The system message provides context and instructions to the model. | |
- **Default**: "" | |
## Max New Tokens | |
- **Description**: The maximum number of tokens to generate in the response. | |
- **Default**: 512 | |
- **Range**: 1 to 4096 | |
## Temperature | |
- **Description**: Controls the randomness of the output. Lower values make the output more deterministic, higher values make it output more varied. | |
- **Default**: 0.7 | |
- **Range**: 0.1 to 4.0 | |
## Top-P | |
- **Description**: Controls the diversity of the output. Lower values make the output more focused, higher values make it more varied. | |
- **Default**: 0.7 | |
- **Range**: 0.1 to 1.0 | |
## Frequency Penalty | |
- **Description**: Penalizes repeated tokens in the response. Higher values makes the output less repetitive. | |
- **Default**: 0.0 | |
- **Range**: -2.0 to 2.0 | |
## Seed | |
- **Description**: A fixed seed for reproducibility. -1 for random. | |
- **Default**: -1 | |
- **Range**: -1 to 65535 | |
""" | |
) | |
""" | |
# Row containing the 'Run' button to trigger the query function | |
with gr.Row(): | |
text_button = gr.Button("Run", variant='primary', elem_id="gen-button") | |
# Row for displaying the generated response | |
with gr.Row(): | |
response_output = gr.Textbox(label="Response Output", elem_id="response-output") | |
# Set up button to call the respond function | |
text_button.click( | |
respond, | |
inputs=[ | |
text_prompt, model, custom_model, system_message, max_tokens, temperature, top_p, frequency_penalty, seed | |
], | |
outputs=[response_output] | |
) | |
print("Gradio interface initialized.") | |
if __name__ == "__main__": | |
demo.launch(show_api=False, share=False) |