Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -22,7 +22,8 @@ def respond(
|
|
22 |
top_p,
|
23 |
frequency_penalty,
|
24 |
seed,
|
25 |
-
|
|
|
26 |
):
|
27 |
"""
|
28 |
This function handles the chatbot response. It takes in:
|
@@ -32,17 +33,19 @@ def respond(
|
|
32 |
- max_tokens: the maximum number of tokens to generate in the response
|
33 |
- temperature: sampling temperature
|
34 |
- top_p: top-p (nucleus) sampling
|
35 |
-
- frequency_penalty: penalize repeated tokens in the
|
36 |
- seed: a fixed seed for reproducibility; -1 will mean 'random'
|
37 |
-
-
|
|
|
38 |
"""
|
39 |
|
40 |
print(f"Received message: {message}")
|
41 |
print(f"History: {history}")
|
42 |
-
print(f"
|
43 |
-
print(f"
|
44 |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
|
45 |
-
print(f"Selected
|
|
|
46 |
|
47 |
# Convert seed to None if -1 (meaning random)
|
48 |
if seed == -1:
|
@@ -58,7 +61,7 @@ def respond(
|
|
58 |
if user_part:
|
59 |
messages.append({"role": "user", "content": user_part})
|
60 |
print(f"Added user message to context: {user_part}")
|
61 |
-
|
62 |
messages.append({"role": "assistant", "content": assistant_part})
|
63 |
print(f"Added assistant message to context: {assistant_part}")
|
64 |
|
@@ -69,19 +72,19 @@ def respond(
|
|
69 |
response = ""
|
70 |
print("Sending request to OpenAI API.")
|
71 |
|
72 |
-
# Make the
|
73 |
for message_chunk in client.chat.completions.create(
|
74 |
-
model=
|
75 |
max_tokens=max_tokens,
|
76 |
stream=True, # Stream the response
|
77 |
temperature=temperature,
|
78 |
top_p=top_p,
|
79 |
-
frequency_penalty=frequency_penalty, # <--
|
80 |
-
seed=seed, # <--
|
81 |
-
messages=messages
|
82 |
):
|
83 |
# Extract the token text from the response chunk
|
84 |
-
token_text = message_chunk.choices[0].
|
85 |
print(f"Received token: {token_text}")
|
86 |
response += token_text
|
87 |
yield response
|
@@ -92,116 +95,158 @@ def respond(
|
|
92 |
chatbot = gr.Chatbot(height=600)
|
93 |
print("Chatbot interface created.")
|
94 |
|
95 |
-
# Define the
|
96 |
-
|
97 |
-
|
98 |
-
"
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
#
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
with gr.Row():
|
109 |
-
|
110 |
-
|
111 |
-
model_search = gr.Textbox(label="Filter Models", placeholder="Search for a featured model...", lines=1)
|
112 |
-
model = gr.Dropdown(label="Select a model below", choices=featured_models, value="meta-llama/Llama-3.3-70B-Instruct", interactive=True)
|
113 |
-
|
114 |
-
def filter_models(search_term):
|
115 |
-
filtered_models = [m for m in featured_models if search_term.lower() in m.lower()]
|
116 |
-
return gr.update(choices=filtered_models)
|
117 |
-
|
118 |
-
model_search.change(filter_models, inputs=model_search, outputs=model)
|
119 |
-
|
120 |
-
custom_model = gr.Textbox(label="Custom Model", placeholder="Enter a custom model ID here", interactive=True)
|
121 |
-
|
122 |
-
# Tab for chat interface
|
123 |
-
with gr.Tab("Chat"):
|
124 |
with gr.Row():
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
# Additional parameters
|
129 |
with gr.Row():
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
# Submit button
|
142 |
-
submit_btn = gr.Button("Submit")
|
143 |
|
144 |
# Tab for information
|
145 |
-
with gr.
|
146 |
with gr.Row():
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
- **meta-llama/Llama-3.3-70B-Instruct**: A large language model from Meta.
|
152 |
-
- **google/flan-t5-xl**: A pretrained encoder-decoder model from Google.
|
153 |
-
- **facebook/bart-large-cnn**: A pretrained sequence-to-sequence model from Facebook.
|
154 |
-
- **EleutherAI/gpt-neo-2.7B**: A large autoregressive language model from EleutherAI.
|
155 |
-
|
156 |
-
# Parameters Overview
|
157 |
-
|
158 |
-
- **System Message**: Sets the behavior and context for the assistant.
|
159 |
-
- **Max New Tokens**: Limits the length of the generated response.
|
160 |
-
- **Temperature**: Controls the randomness of the output. Higher values make output more random.
|
161 |
-
- **Top-P**: Controls the diversity of text by selecting tokens that account for top-p probability mass.
|
162 |
-
- **Frequency Penalty**: Decreases the model's likelihood to repeat the same lines.
|
163 |
-
- **Seed**: Ensures reproducibility of results; set to -1 for random seed.
|
164 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
)
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
)
|
202 |
|
203 |
print("Gradio interface initialized.")
|
204 |
|
205 |
if __name__ == "__main__":
|
206 |
-
|
207 |
-
demo.launch()
|
|
|
22 |
top_p,
|
23 |
frequency_penalty,
|
24 |
seed,
|
25 |
+
model,
|
26 |
+
custom_model
|
27 |
):
|
28 |
"""
|
29 |
This function handles the chatbot response. It takes in:
|
|
|
33 |
- max_tokens: the maximum number of tokens to generate in the response
|
34 |
- temperature: sampling temperature
|
35 |
- top_p: top-p (nucleus) sampling
|
36 |
+
- frequency_penalty: penalize repeated tokens in the response
|
37 |
- seed: a fixed seed for reproducibility; -1 will mean 'random'
|
38 |
+
- model: the selected model
|
39 |
+
- custom_model: the custom model path
|
40 |
"""
|
41 |
|
42 |
print(f"Received message: {message}")
|
43 |
print(f"History: {history}")
|
44 |
+
print(f"system message: {system_message}")
|
45 |
+
print(f"max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
|
46 |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
|
47 |
+
print(f"Selected Model: {model}")
|
48 |
+
print(f"Custom model: {custom_model}")
|
49 |
|
50 |
# Convert seed to None if -1 (meaning random)
|
51 |
if seed == -1:
|
|
|
61 |
if user_part:
|
62 |
messages.append({"role": "user", "content": user_part})
|
63 |
print(f"Added user message to context: {user_part}")
|
64 |
+
ifassistant_part:
|
65 |
messages.append({"role": "assistant", "content": assistant_part})
|
66 |
print(f"Added assistant message to context: {assistant_part}")
|
67 |
|
|
|
72 |
response = ""
|
73 |
print("Sending request to OpenAI API.")
|
74 |
|
75 |
+
# Make the request to the HF Inference API via openAI-like client
|
76 |
for message_chunk in client.chat.completions.create(
|
77 |
+
model=custom_model if custom_model.strip() != "" else model,
|
78 |
max_tokens=max_tokens,
|
79 |
stream=True, # Stream the response
|
80 |
temperature=temperature,
|
81 |
top_p=top_p,
|
82 |
+
frequency_penalty=frequency_penalty, # <--
|
83 |
+
seed=seed, # <--
|
84 |
+
messages=messages
|
85 |
):
|
86 |
# Extract the token text from the response chunk
|
87 |
+
token_text = message_chunk.choices[0].message.content
|
88 |
print(f"Received token: {token_text}")
|
89 |
response += token_text
|
90 |
yield response
|
|
|
95 |
chatbot = gr.Chatbot(height=600)
|
96 |
print("Chatbot interface created.")
|
97 |
|
98 |
+
# Define the Gradio interface
|
99 |
+
with gr.Blocks(theme='Nymbo/Nymbo_Theme') as demo:
|
100 |
+
# Tab for basic settings
|
101 |
+
with gr.Tab("Basic Settings"):
|
102 |
+
with gr.Column(elem_id="prompt-container"):
|
103 |
+
with gr.Row():
|
104 |
+
# Textbox for user to input the message
|
105 |
+
text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=3, elem_id="prompt-text-input")
|
106 |
+
with gr.Row():
|
107 |
+
# Textbox for custom model input
|
108 |
+
custom_model = gr.textbox(label="Custom Model", info="HuggingFace model path (optional)", placeholder="meta-llama/Llama-3.3-70B-Instruct", lines=1, elem_id="model-search-input")
|
109 |
+
# Accordion for selecting the model
|
110 |
+
with gr.Accordion("Featured models", open=True):
|
111 |
+
# Textbox for searching models
|
112 |
+
model_search = gr.textbox(Label="Filter models", placeholder="Search for a featured model...", lines=1, elem_id="model-search-input")
|
113 |
+
# Radio buttons to select the desired model
|
114 |
+
model = gr.Radio(label="Select a model below", value="meta-llama/Llama-3.3-70B-Instruct", choices=[
|
115 |
+
"meta-llama/Llama-3.3-70B-Instruct",
|
116 |
+
"anthropic/claude-3",
|
117 |
+
"anthropic/claude-instant-3",
|
118 |
+
"anthropic/claude-2",
|
119 |
+
"anthropic/claude-2",
|
120 |
+
"anthropic/claude-instant-2",
|
121 |
+
"anthropic/claude-1.3",
|
122 |
+
"anthropic/claude-instant-1.3",
|
123 |
+
"anthropic/claude-1",
|
124 |
+
"anthropic/claude-instant-1",
|
125 |
+
"anthropic/claude-0.3",
|
126 |
+
"anthropic/claude-instant-0.3",
|
127 |
+
"anthropic/claude-0.1",
|
128 |
+
"anthropic/claude-instant-0.1",
|
129 |
+
"anthropic/claude-v2",
|
130 |
+
"anthropic/claude-instant-v2",
|
131 |
+
"anthropic/claude-v1",
|
132 |
+
"anthropic/claude-instant-v1",
|
133 |
+
"anthropic/claude-v0.3",
|
134 |
+
"anthropic/claude-instant-v0.3",
|
135 |
+
"anthropic/claude-v0.1",
|
136 |
+
"anthropic/claude-instant-v0.1",
|
137 |
+
], interactive=True, elem_id="model-radio")
|
138 |
+
|
139 |
+
# Filtering models based on search input
|
140 |
+
def filter_models(search_term):
|
141 |
+
filtered_models = [m for m in model.choices if search_term.lower() in m.lower()]
|
142 |
+
return gr.update(choices=filtered_models)
|
143 |
+
|
144 |
+
# Update model list when search box is used
|
145 |
+
model_search.change(filter_models, inputs=model, outputs=model)
|
146 |
+
|
147 |
+
# Tab for advanced settings
|
148 |
+
with gr.Tab("Advanced Settings"):
|
149 |
with gr.Row():
|
150 |
+
# Text box for specifying the system message
|
151 |
+
system_message = gr.text box(value="", label="System message")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
with gr.Row():
|
153 |
+
# Slider for setting the maximum new tokens
|
154 |
+
max_tokens = gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens")
|
|
|
|
|
155 |
with gr.Row():
|
156 |
+
# Slider for setting the temperature
|
157 |
+
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
|
158 |
+
with gr.Row():
|
159 |
+
#Slider for setting top-p
|
160 |
+
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-P")
|
161 |
+
with gr.Row():
|
162 |
+
#Slider for setting frequency penalty
|
163 |
+
frequency_penalty = gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty")
|
164 |
+
with gr.Row():
|
165 |
+
#Slider for setting the seed
|
166 |
+
seed = gr.SLider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)")
|
|
|
|
|
167 |
|
168 |
# Tab for information
|
169 |
+
with gr.tab("Information"):
|
170 |
with gr.Row():
|
171 |
+
# Display a sample prompt
|
172 |
+
gr.textbox(label="Sample prompt", value="Enter a prompt | ultra detail, ultra elaboration, ultra quality, perfect.")
|
173 |
+
with gr.Accordion("Featured Models (WiP)", open=False):
|
174 |
+
gr.html(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
"""
|
176 |
+
<p><a href="https://huggingface.co/models?inferences=warm&pipeline_tag=text-to-text&sort=trending">View more models</a></p>
|
177 |
+
<table style="width:100%; text-align:center; margin:auto;">
|
178 |
+
<tr>
|
179 |
+
<th>Model</th>
|
180 |
+
<th>Description</th>
|
181 |
+
</tr>
|
182 |
+
<tr>
|
183 |
+
<td>meta-llama/Llama-3.3-70B-Instruct</td>
|
184 |
+
<td>High-quality, large-scale language model</td>
|
185 |
+
</tr>
|
186 |
+
<tr>
|
187 |
+
<td>anthropic/claude-3</td>
|
188 |
+
<td> Advanced conversational AI model</td>
|
189 |
+
</tr>
|
190 |
+
<tr>
|
191 |
+
<td>anthropic/claude-instant-3</td>
|
192 |
+
<td> Fast and efficient conversational AI model</td>
|
193 |
+
</tr>
|
194 |
+
</table>
|
195 |
+
"""
|
196 |
)
|
197 |
+
with gr.Accordion("Parameters Overview", open=False):
|
198 |
+
gr.markdown(
|
199 |
+
"""
|
200 |
+
## System Message
|
201 |
+
- **Description**: The system message provides context and instructions to the model.
|
202 |
+
- **Default**: ""
|
203 |
+
|
204 |
+
## Max New Tokens
|
205 |
+
- **Description**: The maximum number of tokens to generate in the response.
|
206 |
+
- **Default**: 512
|
207 |
+
- **Range**: 1 to 4096
|
208 |
+
|
209 |
+
## Temperature
|
210 |
+
- **Description**: Controls the randomness of the output. Lower values make the output more deterministic, higher values make it output more varied.
|
211 |
+
- **Default**: 0.7
|
212 |
+
- **Range**: 0.1 to 4.0
|
213 |
+
|
214 |
+
## Top-P
|
215 |
+
- **Description**: Controls the diversity of the output. Lower values make the output more focused, higher values make it more varied.
|
216 |
+
- **Default**: 0.7
|
217 |
+
- **Range**: 0.1 to 1.0
|
218 |
+
|
219 |
+
## Frequency Penalty
|
220 |
+
- **Description**: Penalizes repeated tokens in the response. Higher values makes the output less repetitive.
|
221 |
+
- **Default**: 0.0
|
222 |
+
- **Range**: -2.0 to 2.0
|
223 |
+
|
224 |
+
## Seed
|
225 |
+
- **Description**: A fixed seed for reproducibility. -1 for random.
|
226 |
+
- **Default**: -1
|
227 |
+
- **Range**: -1 to 65535
|
228 |
+
|
229 |
+
"""
|
230 |
+
)
|
231 |
+
"""
|
232 |
+
|
233 |
+
# Row containing the 'Run' button to trigger the query function
|
234 |
+
with gr.Row():
|
235 |
+
text_button = gr.Button("Run", variant='primary', elem_id="gen-button")
|
236 |
+
# Row for displaying the generated response
|
237 |
+
with gr.Row():
|
238 |
+
response_output = gr.Textbox(label="Response Output", elem_id="response-output")
|
239 |
+
|
240 |
+
# Set up button to call the respond function
|
241 |
+
text_button.click(
|
242 |
+
respond,
|
243 |
+
inputs=[
|
244 |
+
text_prompt, model, custom_model, system_message, max_tokens, temperature, top_p, frequency_penalty, seed
|
245 |
+
],
|
246 |
+
outputs=[response_output]
|
247 |
)
|
248 |
|
249 |
print("Gradio interface initialized.")
|
250 |
|
251 |
if __name__ == "__main__":
|
252 |
+
demo.launch(show_api=False, share=False)
|
|