Spaces:
Running
Running
File size: 10,322 Bytes
038f313 4c18bfc 038f313 880ced6 e13eb1b 038f313 e13eb1b 038f313 e13eb1b 038f313 e13eb1b 69b4a5f 038f313 3a64d68 e13eb1b e4bb2d0 038f313 e13eb1b e4bb2d0 e13eb1b e4bb2d0 e13eb1b f7c4208 e4bb2d0 f7c4208 e4bb2d0 f7c4208 e13eb1b 5b1509d 038f313 e13eb1b 880ced6 f7c4208 e13eb1b e4bb2d0 e13eb1b 038f313 e13eb1b 038f313 e13eb1b f7c4208 e4bb2d0 e13eb1b e4bb2d0 038f313 e13eb1b 038f313 e4bb2d0 038f313 f7c4208 e4bb2d0 e13eb1b cf508a7 542c2ac e13eb1b f7c4208 e13eb1b e4bb2d0 e13eb1b e4bb2d0 e13eb1b e4bb2d0 e13eb1b e4bb2d0 e13eb1b e4bb2d0 e13eb1b e4bb2d0 e13eb1b e4bb2d0 e13eb1b e4bb2d0 e13eb1b e4bb2d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
import gradio as gr
from openai import OpenAI
import os
# Retrieve the access token from the environment variable
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")
# Initialize the OpenAI client with the Hugging Face Inference API endpoint
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1/",
api_key=ACCESS_TOKEN,
)
print("OpenAI client initialized.")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
model,
custom_model
):
"""
This function handles the chatbot response. It takes in:
- message: the user's new message
- history: the list of previous messages, each as a tuple (user_msg, assistant_msg)
- system_message: the system prompt
- max_tokens: the maximum number of tokens to generate in the response
- temperature: sampling temperature
- top_p: top-p (nucleus) sampling
- frequency_penalty: penalize repeated tokens in the response
- seed: a fixed seed for reproducibility; -1 will mean 'random'
- model: the selected model
- custom_model: the custom model path
"""
print(f"Received message: {message}")
print(f"History: {history}")
print(f"system message: {system_message}")
print(f"max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
print(f"Selected Model: {model}")
print(f"Custom model: {custom_model}")
# Convert seed to None if -1 (meaning random)
if seed == -1:
seed = None
# Construct the messages array required by the API
messages = [{"role": "system", "content": system_message}]
# Add conversation history to the context
for val in history:
user_part = val[0]
assistant_part = val[1]
if user_part:
messages.append({"role": "user", "content": user_part})
print(f"Added user message to context: {user_part}")
ifassistant_part:
messages.append({"role": "assistant", "content": assistant_part})
print(f"Added assistant message to context: {assistant_part}")
# Append the latest user message
messages.append({"role": "user", "content": message})
# Start with an empty string to build the response as tokens stream in
response = ""
print("Sending request to OpenAI API.")
# Make the request to the HF Inference API via openAI-like client
for message_chunk in client.chat.completions.create(
model=custom_model if custom_model.strip() != "" else model,
max_tokens=max_tokens,
stream=True, # Stream the response
temperature=temperature,
top_p=top_p,
frequency_penalty=frequency_penalty, # <--
seed=seed, # <--
messages=messages
):
# Extract the token text from the response chunk
token_text = message_chunk.choices[0].message.content
print(f"Received token: {token_text}")
response += token_text
yield response
print("Completed response generation.")
# Create a Chatbot component with a specified height
chatbot = gr.Chatbot(height=600)
print("Chatbot interface created.")
# Define the Gradio interface
with gr.Blocks(theme='Nymbo/Nymbo_Theme') as demo:
# Tab for basic settings
with gr.Tab("Basic Settings"):
with gr.Column(elem_id="prompt-container"):
with gr.Row():
# Textbox for user to input the message
text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=3, elem_id="prompt-text-input")
with gr.Row():
# Textbox for custom model input
custom_model = gr.textbox(label="Custom Model", info="HuggingFace model path (optional)", placeholder="meta-llama/Llama-3.3-70B-Instruct", lines=1, elem_id="model-search-input")
# Accordion for selecting the model
with gr.Accordion("Featured models", open=True):
# Textbox for searching models
model_search = gr.textbox(Label="Filter models", placeholder="Search for a featured model...", lines=1, elem_id="model-search-input")
# Radio buttons to select the desired model
model = gr.Radio(label="Select a model below", value="meta-llama/Llama-3.3-70B-Instruct", choices=[
"meta-llama/Llama-3.3-70B-Instruct",
"anthropic/claude-3",
"anthropic/claude-instant-3",
"anthropic/claude-2",
"anthropic/claude-2",
"anthropic/claude-instant-2",
"anthropic/claude-1.3",
"anthropic/claude-instant-1.3",
"anthropic/claude-1",
"anthropic/claude-instant-1",
"anthropic/claude-0.3",
"anthropic/claude-instant-0.3",
"anthropic/claude-0.1",
"anthropic/claude-instant-0.1",
"anthropic/claude-v2",
"anthropic/claude-instant-v2",
"anthropic/claude-v1",
"anthropic/claude-instant-v1",
"anthropic/claude-v0.3",
"anthropic/claude-instant-v0.3",
"anthropic/claude-v0.1",
"anthropic/claude-instant-v0.1",
], interactive=True, elem_id="model-radio")
# Filtering models based on search input
def filter_models(search_term):
filtered_models = [m for m in model.choices if search_term.lower() in m.lower()]
return gr.update(choices=filtered_models)
# Update model list when search box is used
model_search.change(filter_models, inputs=model, outputs=model)
# Tab for advanced settings
with gr.Tab("Advanced Settings"):
with gr.Row():
# Text box for specifying the system message
system_message = gr.text box(value="", label="System message")
with gr.Row():
# Slider for setting the maximum new tokens
max_tokens = gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens")
with gr.Row():
# Slider for setting the temperature
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
with gr.Row():
#Slider for setting top-p
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-P")
with gr.Row():
#Slider for setting frequency penalty
frequency_penalty = gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty")
with gr.Row():
#Slider for setting the seed
seed = gr.SLider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)")
# Tab for information
with gr.tab("Information"):
with gr.Row():
# Display a sample prompt
gr.textbox(label="Sample prompt", value="Enter a prompt | ultra detail, ultra elaboration, ultra quality, perfect.")
with gr.Accordion("Featured Models (WiP)", open=False):
gr.html(
"""
<p><a href="https://huggingface.co/models?inferences=warm&pipeline_tag=text-to-text&sort=trending">View more models</a></p>
<table style="width:100%; text-align:center; margin:auto;">
<tr>
<th>Model</th>
<th>Description</th>
</tr>
<tr>
<td>meta-llama/Llama-3.3-70B-Instruct</td>
<td>High-quality, large-scale language model</td>
</tr>
<tr>
<td>anthropic/claude-3</td>
<td> Advanced conversational AI model</td>
</tr>
<tr>
<td>anthropic/claude-instant-3</td>
<td> Fast and efficient conversational AI model</td>
</tr>
</table>
"""
)
with gr.Accordion("Parameters Overview", open=False):
gr.markdown(
"""
## System Message
- **Description**: The system message provides context and instructions to the model.
- **Default**: ""
## Max New Tokens
- **Description**: The maximum number of tokens to generate in the response.
- **Default**: 512
- **Range**: 1 to 4096
## Temperature
- **Description**: Controls the randomness of the output. Lower values make the output more deterministic, higher values make it output more varied.
- **Default**: 0.7
- **Range**: 0.1 to 4.0
## Top-P
- **Description**: Controls the diversity of the output. Lower values make the output more focused, higher values make it more varied.
- **Default**: 0.7
- **Range**: 0.1 to 1.0
## Frequency Penalty
- **Description**: Penalizes repeated tokens in the response. Higher values makes the output less repetitive.
- **Default**: 0.0
- **Range**: -2.0 to 2.0
## Seed
- **Description**: A fixed seed for reproducibility. -1 for random.
- **Default**: -1
- **Range**: -1 to 65535
"""
)
"""
# Row containing the 'Run' button to trigger the query function
with gr.Row():
text_button = gr.Button("Run", variant='primary', elem_id="gen-button")
# Row for displaying the generated response
with gr.Row():
response_output = gr.Textbox(label="Response Output", elem_id="response-output")
# Set up button to call the respond function
text_button.click(
respond,
inputs=[
text_prompt, model, custom_model, system_message, max_tokens, temperature, top_p, frequency_penalty, seed
],
outputs=[response_output]
)
print("Gradio interface initialized.")
if __name__ == "__main__":
demo.launch(show_api=False, share=False) |