File size: 10,322 Bytes
038f313
 
4c18bfc
038f313
880ced6
 
e13eb1b
038f313
e13eb1b
038f313
 
 
 
e13eb1b
038f313
 
 
e13eb1b
69b4a5f
038f313
 
 
3a64d68
e13eb1b
e4bb2d0
 
038f313
e13eb1b
 
 
 
 
 
 
 
e4bb2d0
e13eb1b
e4bb2d0
 
e13eb1b
 
f7c4208
 
e4bb2d0
 
f7c4208
e4bb2d0
 
f7c4208
e13eb1b
5b1509d
 
038f313
e13eb1b
880ced6
f7c4208
 
e13eb1b
 
 
 
 
 
e4bb2d0
e13eb1b
 
 
 
038f313
 
e13eb1b
038f313
e13eb1b
f7c4208
e4bb2d0
e13eb1b
e4bb2d0
038f313
e13eb1b
038f313
 
e4bb2d0
 
 
038f313
f7c4208
e4bb2d0
e13eb1b
 
cf508a7
542c2ac
e13eb1b
f7c4208
e13eb1b
 
 
 
e4bb2d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e13eb1b
e4bb2d0
 
e13eb1b
e4bb2d0
 
e13eb1b
e4bb2d0
 
 
 
 
 
 
 
 
 
 
e13eb1b
 
e4bb2d0
e13eb1b
e4bb2d0
 
 
 
e13eb1b
e4bb2d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e13eb1b
e4bb2d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e13eb1b
 
 
 
 
e4bb2d0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import gradio as gr
from openai import OpenAI
import os

# Retrieve the access token from the environment variable
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")

# Initialize the OpenAI client with the Hugging Face Inference API endpoint
client = OpenAI(
    base_url="https://api-inference.huggingface.co/v1/",
    api_key=ACCESS_TOKEN,
)
print("OpenAI client initialized.")

def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
    frequency_penalty,
    seed,
    model,
    custom_model
):
    """
    This function handles the chatbot response. It takes in:
    - message: the user's new message
    - history: the list of previous messages, each as a tuple (user_msg, assistant_msg)
    - system_message: the system prompt
    - max_tokens: the maximum number of tokens to generate in the response
    - temperature: sampling temperature
    - top_p: top-p (nucleus) sampling
    - frequency_penalty: penalize repeated tokens in the response
    - seed: a fixed seed for reproducibility; -1 will mean 'random'
    - model: the selected model
    - custom_model: the custom model path
    """

    print(f"Received message: {message}")
    print(f"History: {history}")
    print(f"system message: {system_message}")
    print(f"max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
    print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
    print(f"Selected Model: {model}")
    print(f"Custom model: {custom_model}")

    # Convert seed to None if -1 (meaning random)
    if seed == -1:
        seed = None

    # Construct the messages array required by the API
    messages = [{"role": "system", "content": system_message}]

    # Add conversation history to the context
    for val in history:
        user_part = val[0]
        assistant_part = val[1]
        if user_part:
            messages.append({"role": "user", "content": user_part})
            print(f"Added user message to context: {user_part}")
        ifassistant_part:
            messages.append({"role": "assistant", "content": assistant_part})
            print(f"Added assistant message to context: {assistant_part}")

    # Append the latest user message
    messages.append({"role": "user", "content": message})

    # Start with an empty string to build the response as tokens stream in
    response = ""
    print("Sending request to OpenAI API.")

    # Make the request to the HF Inference API via openAI-like client
    for message_chunk in client.chat.completions.create(
        model=custom_model if custom_model.strip() != "" else model,
        max_tokens=max_tokens,
        stream=True,  # Stream the response
        temperature=temperature,
        top_p=top_p,
        frequency_penalty=frequency_penalty,  # <--
        seed=seed,  # <--
        messages=messages
    ):
        # Extract the token text from the response chunk
        token_text = message_chunk.choices[0].message.content
        print(f"Received token: {token_text}")
        response += token_text
        yield response

    print("Completed response generation.")

# Create a Chatbot component with a specified height
chatbot = gr.Chatbot(height=600)
print("Chatbot interface created.")

# Define the Gradio interface
with gr.Blocks(theme='Nymbo/Nymbo_Theme') as demo:
    # Tab for basic settings
    with gr.Tab("Basic Settings"):
        with gr.Column(elem_id="prompt-container"):
            with gr.Row():
                # Textbox for user to input the message
                text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=3, elem_id="prompt-text-input")
            with gr.Row():
                # Textbox for custom model input
                custom_model = gr.textbox(label="Custom Model", info="HuggingFace model path (optional)", placeholder="meta-llama/Llama-3.3-70B-Instruct", lines=1, elem_id="model-search-input")
            # Accordion for selecting the model
            with gr.Accordion("Featured models", open=True):
                # Textbox for searching models
                model_search = gr.textbox(Label="Filter models", placeholder="Search for a featured model...", lines=1, elem_id="model-search-input")
                # Radio buttons to select the desired model
                model = gr.Radio(label="Select a model below", value="meta-llama/Llama-3.3-70B-Instruct", choices=[
                    "meta-llama/Llama-3.3-70B-Instruct",
                    "anthropic/claude-3",
                    "anthropic/claude-instant-3",
                    "anthropic/claude-2",
                    "anthropic/claude-2",
                    "anthropic/claude-instant-2",
                    "anthropic/claude-1.3",
                    "anthropic/claude-instant-1.3",
                    "anthropic/claude-1",
                    "anthropic/claude-instant-1",
                    "anthropic/claude-0.3",
                    "anthropic/claude-instant-0.3",
                    "anthropic/claude-0.1",
                    "anthropic/claude-instant-0.1",
                    "anthropic/claude-v2",
                    "anthropic/claude-instant-v2",
                    "anthropic/claude-v1",
                    "anthropic/claude-instant-v1",
                    "anthropic/claude-v0.3",
                    "anthropic/claude-instant-v0.3",
                    "anthropic/claude-v0.1",
                    "anthropic/claude-instant-v0.1",
                ], interactive=True, elem_id="model-radio")

                # Filtering models based on search input
                def filter_models(search_term):
                    filtered_models = [m for m in model.choices if search_term.lower() in m.lower()]
                    return gr.update(choices=filtered_models)

                # Update model list when search box is used
                model_search.change(filter_models, inputs=model, outputs=model)

    # Tab for advanced settings
    with gr.Tab("Advanced Settings"):
        with gr.Row():
            # Text box for specifying the system message
            system_message = gr.text box(value="", label="System message")
        with gr.Row():
            # Slider for setting the maximum new tokens
            max_tokens = gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens")
        with gr.Row():
            # Slider for setting the temperature
            temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
        with gr.Row():
            #Slider for setting top-p
            top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-P")
        with gr.Row():
            #Slider for setting frequency penalty
            frequency_penalty = gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty")
        with gr.Row():
            #Slider for setting the seed
            seed = gr.SLider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)")

    # Tab for information
    with gr.tab("Information"):
        with gr.Row():
            # Display a sample prompt
            gr.textbox(label="Sample prompt", value="Enter a prompt | ultra detail, ultra elaboration, ultra quality, perfect.")
        with gr.Accordion("Featured Models (WiP)", open=False):
            gr.html(
                """
            <p><a href="https://huggingface.co/models?inferences=warm&pipeline_tag=text-to-text&sort=trending">View more models</a></p>
            <table style="width:100%; text-align:center; margin:auto;">
                <tr>
                    <th>Model</th>
                    <th>Description</th>
                </tr>
                <tr>
                    <td>meta-llama/Llama-3.3-70B-Instruct</td>
                    <td>High-quality, large-scale language model</td>
                </tr>
                <tr>
                    <td>anthropic/claude-3</td>
                    <td> Advanced conversational AI model</td>
                </tr>
                <tr>
                    <td>anthropic/claude-instant-3</td>
                    <td> Fast and efficient conversational AI model</td>
                </tr>
            </table>
            """
            )
        with gr.Accordion("Parameters Overview", open=False):
            gr.markdown(
            """
            ## System Message
            - **Description**: The system message provides context and instructions to the model.
            - **Default**: ""

            ## Max New Tokens
            - **Description**: The maximum number of tokens to generate in the response.
            - **Default**: 512
            - **Range**: 1 to 4096

            ## Temperature
            - **Description**: Controls the randomness of the output. Lower values make the output more deterministic, higher values make it output more varied.
 - **Default**: 0.7
 - **Range**: 0.1 to 4.0

            ## Top-P
            - **Description**: Controls the diversity of the output. Lower values make the output more focused, higher values make it more varied.
            - **Default**: 0.7
            - **Range**: 0.1 to 1.0

            ## Frequency Penalty
            - **Description**: Penalizes repeated tokens in the response. Higher values makes the output less repetitive.
 - **Default**: 0.0
 - **Range**: -2.0 to 2.0

            ## Seed
            - **Description**: A fixed seed for reproducibility. -1 for random.
            - **Default**: -1
            - **Range**: -1 to 65535

            """
            )
"""

    # Row containing the 'Run' button to trigger the query function
    with gr.Row():
        text_button = gr.Button("Run", variant='primary', elem_id="gen-button")
    # Row for displaying the generated response
    with gr.Row():
        response_output = gr.Textbox(label="Response Output", elem_id="response-output")

    # Set up button to call the respond function
    text_button.click(
        respond,
        inputs=[
            text_prompt, model, custom_model, system_message, max_tokens, temperature, top_p, frequency_penalty, seed
        ],
        outputs=[response_output]
    )

print("Gradio interface initialized.")

if __name__ == "__main__":
    demo.launch(show_api=False, share=False)