Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,17 +2,15 @@ import gradio as gr
|
|
2 |
from openai import OpenAI
|
3 |
import os
|
4 |
|
5 |
-
#
|
6 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
7 |
-
|
8 |
print("Access token loaded.")
|
9 |
|
10 |
-
# Initialize the OpenAI client with Hugging Face
|
11 |
client = OpenAI(
|
12 |
base_url="https://api-inference.huggingface.co/v1/",
|
13 |
api_key=ACCESS_TOKEN,
|
14 |
)
|
15 |
-
|
16 |
print("OpenAI client initialized.")
|
17 |
|
18 |
def respond(
|
@@ -23,79 +21,96 @@ def respond(
|
|
23 |
temperature,
|
24 |
top_p,
|
25 |
frequency_penalty,
|
26 |
-
seed
|
27 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
print(f"Received message: {message}")
|
29 |
print(f"History: {history}")
|
30 |
print(f"System message: {system_message}")
|
31 |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
|
32 |
-
print(f"Frequency
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
# Construct the messages
|
35 |
messages = [{"role": "system", "content": system_message}]
|
36 |
|
|
|
37 |
for val in history:
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
44 |
|
|
|
45 |
messages.append({"role": "user", "content": message})
|
46 |
|
|
|
47 |
response = ""
|
48 |
print("Sending request to OpenAI API.")
|
49 |
|
50 |
-
|
51 |
-
|
|
|
52 |
max_tokens=max_tokens,
|
53 |
-
stream=True,
|
54 |
temperature=temperature,
|
55 |
top_p=top_p,
|
56 |
-
frequency_penalty=frequency_penalty,
|
57 |
-
seed=seed,
|
58 |
messages=messages,
|
59 |
):
|
60 |
-
token
|
61 |
-
|
62 |
-
|
|
|
63 |
yield response
|
64 |
|
65 |
print("Completed response generation.")
|
66 |
|
67 |
-
#
|
68 |
chatbot = gr.Chatbot(height=600)
|
69 |
-
|
70 |
print("Chatbot interface created.")
|
71 |
|
72 |
-
# Create the Gradio
|
|
|
73 |
demo = gr.ChatInterface(
|
74 |
respond,
|
75 |
additional_inputs=[
|
76 |
gr.Textbox(value="", label="System message"),
|
77 |
-
gr.Slider(minimum=1,
|
78 |
-
gr.Slider(minimum=0.1, maximum=4.0,
|
79 |
-
gr.Slider(
|
80 |
-
minimum=0.1,
|
81 |
-
maximum=1.0,
|
82 |
-
value=0.95,
|
83 |
-
step=0.05,
|
84 |
-
label="Top-P",
|
85 |
-
),
|
86 |
gr.Slider(
|
87 |
minimum=-2.0,
|
88 |
maximum=2.0,
|
89 |
value=0.0,
|
90 |
step=0.1,
|
91 |
-
label="Frequency Penalty"
|
92 |
),
|
93 |
gr.Slider(
|
94 |
minimum=-1,
|
95 |
-
maximum=
|
96 |
value=-1,
|
97 |
step=1,
|
98 |
-
label="Seed"
|
99 |
),
|
100 |
],
|
101 |
fill_height=True,
|
|
|
2 |
from openai import OpenAI
|
3 |
import os
|
4 |
|
5 |
+
# Retrieve the access token from the environment variable
|
6 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
|
|
7 |
print("Access token loaded.")
|
8 |
|
9 |
+
# Initialize the OpenAI client with the Hugging Face Inference API endpoint
|
10 |
client = OpenAI(
|
11 |
base_url="https://api-inference.huggingface.co/v1/",
|
12 |
api_key=ACCESS_TOKEN,
|
13 |
)
|
|
|
14 |
print("OpenAI client initialized.")
|
15 |
|
16 |
def respond(
|
|
|
21 |
temperature,
|
22 |
top_p,
|
23 |
frequency_penalty,
|
24 |
+
seed
|
25 |
):
|
26 |
+
"""
|
27 |
+
This function handles the chatbot response. It takes in:
|
28 |
+
- message: the user's new message
|
29 |
+
- history: the list of previous messages, each as a tuple (user_msg, assistant_msg)
|
30 |
+
- system_message: the system prompt
|
31 |
+
- max_tokens: the maximum number of tokens to generate in the response
|
32 |
+
- temperature: sampling temperature
|
33 |
+
- top_p: top-p (nucleus) sampling
|
34 |
+
- frequency_penalty: penalize repeated tokens in the output
|
35 |
+
- seed: a fixed seed for reproducibility; -1 will mean 'random'
|
36 |
+
"""
|
37 |
+
|
38 |
print(f"Received message: {message}")
|
39 |
print(f"History: {history}")
|
40 |
print(f"System message: {system_message}")
|
41 |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
|
42 |
+
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
|
43 |
+
|
44 |
+
# Convert seed to None if -1 (meaning random)
|
45 |
+
if seed == -1:
|
46 |
+
seed = None
|
47 |
|
48 |
+
# Construct the messages array required by the API
|
49 |
messages = [{"role": "system", "content": system_message}]
|
50 |
|
51 |
+
# Add conversation history to the context
|
52 |
for val in history:
|
53 |
+
user_part = val[0]
|
54 |
+
assistant_part = val[1]
|
55 |
+
if user_part:
|
56 |
+
messages.append({"role": "user", "content": user_part})
|
57 |
+
print(f"Added user message to context: {user_part}")
|
58 |
+
if assistant_part:
|
59 |
+
messages.append({"role": "assistant", "content": assistant_part})
|
60 |
+
print(f"Added assistant message to context: {assistant_part}")
|
61 |
|
62 |
+
# Append the latest user message
|
63 |
messages.append({"role": "user", "content": message})
|
64 |
|
65 |
+
# Start with an empty string to build the response as tokens stream in
|
66 |
response = ""
|
67 |
print("Sending request to OpenAI API.")
|
68 |
|
69 |
+
# Make the streaming request to the HF Inference API via openai-like client
|
70 |
+
for message_chunk in client.chat.completions.create(
|
71 |
+
model="meta-llama/Llama-3.3-70B-Instruct", # You can update this to your specific model
|
72 |
max_tokens=max_tokens,
|
73 |
+
stream=True, # Stream the response
|
74 |
temperature=temperature,
|
75 |
top_p=top_p,
|
76 |
+
frequency_penalty=frequency_penalty, # <-- NEW
|
77 |
+
seed=seed, # <-- NEW
|
78 |
messages=messages,
|
79 |
):
|
80 |
+
# Extract the token text from the response chunk
|
81 |
+
token_text = message_chunk.choices[0].delta.content
|
82 |
+
print(f"Received token: {token_text}")
|
83 |
+
response += token_text
|
84 |
yield response
|
85 |
|
86 |
print("Completed response generation.")
|
87 |
|
88 |
+
# Create a Chatbot component with a specified height
|
89 |
chatbot = gr.Chatbot(height=600)
|
|
|
90 |
print("Chatbot interface created.")
|
91 |
|
92 |
+
# Create the Gradio ChatInterface
|
93 |
+
# We add two new sliders for Frequency Penalty and Seed
|
94 |
demo = gr.ChatInterface(
|
95 |
respond,
|
96 |
additional_inputs=[
|
97 |
gr.Textbox(value="", label="System message"),
|
98 |
+
gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens"),
|
99 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
100 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"),
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
gr.Slider(
|
102 |
minimum=-2.0,
|
103 |
maximum=2.0,
|
104 |
value=0.0,
|
105 |
step=0.1,
|
106 |
+
label="Frequency Penalty"
|
107 |
),
|
108 |
gr.Slider(
|
109 |
minimum=-1,
|
110 |
+
maximum=65535, # Arbitrary upper limit for demonstration
|
111 |
value=-1,
|
112 |
step=1,
|
113 |
+
label="Seed (-1 for random)"
|
114 |
),
|
115 |
],
|
116 |
fill_height=True,
|