Spaces:
Running
Running
import gradio as gr | |
from openai import OpenAI | |
import os | |
# ------------------- | |
# SERVERLESS-TEXTGEN-HUB | |
# ------------------- | |
# | |
# This version has been updated to include an "Information" tab above the Chat tab. | |
# The Information tab has two accordions: | |
# - "Featured Models" which displays a simple table | |
# - "Parameters Overview" which contains markdown describing the settings | |
# | |
# The Chat tab contains the existing chatbot UI. | |
# ------------------- | |
# SETUP AND CONFIG | |
# ------------------- | |
# Retrieve the access token from the environment variable | |
ACCESS_TOKEN = os.getenv("HF_TOKEN") | |
print("Access token loaded.") | |
# Initialize the OpenAI-like client (Hugging Face Inference API) with your token | |
client = OpenAI( | |
base_url="https://api-inference.huggingface.co/v1/", | |
api_key=ACCESS_TOKEN, | |
) | |
print("OpenAI client initialized.") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
frequency_penalty, | |
seed, | |
custom_model | |
): | |
""" | |
This function handles the chatbot response. It takes in: | |
- message: the user's new message | |
- history: the list of previous messages, each as a tuple (user_msg, assistant_msg) | |
- system_message: the system prompt | |
- max_tokens: the maximum number of tokens to generate in the response | |
- temperature: sampling temperature | |
- top_p: top-p (nucleus) sampling | |
- frequency_penalty: penalize repeated tokens in the output | |
- seed: a fixed seed for reproducibility; -1 will mean 'random' | |
- custom_model: the final model name in use, which may be set by selecting from the Featured Models radio or by typing a custom model | |
""" | |
print(f"Received message: {message}") | |
print(f"History: {history}") | |
print(f"System message: {system_message}") | |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}") | |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}") | |
print(f"Selected model (custom_model): {custom_model}") | |
# Convert seed to None if -1 (meaning random) | |
if seed == -1: | |
seed = None | |
# Construct the messages array required by the HF Inference API | |
messages = [{"role": "system", "content": system_message}] | |
print("Initial messages array constructed.") | |
# Add conversation history to the context | |
for val in history: | |
user_part = val[0] # Extract user message from the tuple | |
assistant_part = val[1] # Extract assistant message | |
if user_part: | |
messages.append({"role": "user", "content": user_part}) | |
print(f"Added user message to context: {user_part}") | |
if assistant_part: | |
messages.append({"role": "assistant", "content": assistant_part}) | |
print(f"Added assistant message to context: {assistant_part}") | |
# Append the latest user message | |
messages.append({"role": "user", "content": message}) | |
print("Latest user message appended.") | |
# If user provided a model, use that; otherwise, fall back to a default model | |
model_to_use = custom_model.strip() if custom_model.strip() != "" else "meta-llama/Llama-3.3-70B-Instruct" | |
print(f"Model selected for inference: {model_to_use}") | |
# Start with an empty string to build the streamed response | |
response_text = "" | |
print("Sending request to Hugging Face Inference API via OpenAI-like client...") | |
# Make the streaming request to the HF Inference API | |
for message_chunk in client.chat.completions.create( | |
model=model_to_use, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
frequency_penalty=frequency_penalty, | |
seed=seed, | |
messages=messages, | |
): | |
# Extract the token text from the response chunk | |
token_text = message_chunk.choices[0].delta.content | |
print(f"Received token: {token_text}") | |
response_text += token_text | |
# Yield the partial response to Gradio so it can display in real-time | |
yield response_text | |
print("Completed response generation.") | |
# ---------------------- | |
# BUILDING THE INTERFACE | |
# ---------------------- | |
# We will use a "Blocks" layout with two tabs: | |
# 1) "Information" tab, which shows helpful info and a table of "Featured Models" | |
# 2) "Chat" tab, which holds our ChatInterface and associated controls | |
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo: | |
# ----------------- | |
# TAB: INFORMATION | |
# ----------------- | |
with gr.Tab("Information"): | |
# You can add instructions, disclaimers, or helpful text here | |
gr.Markdown("## Welcome to Serverless-TextGen-Hub - Information") | |
# Accordion for Featured Models (table) | |
with gr.Accordion("Featured Models (WiP)", open=False): | |
gr.HTML( | |
""" | |
<p><a href="https://huggingface.co/models?inference=warm&pipeline_tag=chat&sort=trending" target="_blank">See all available text models on Hugging Face</a></p> | |
<table style="width:100%; text-align:center; margin:auto;"> | |
<tr> | |
<th>Model Name</th> | |
<th>Supported</th> | |
<th>Notes</th> | |
</tr> | |
<tr> | |
<td>meta-llama/Llama-3.3-70B-Instruct</td> | |
<td>✅</td> | |
<td>Default model, if none is provided in the 'Custom Model' box.</td> | |
</tr> | |
<tr> | |
<td>meta-llama/Llama-3.2-3B-Instruct</td> | |
<td>✅</td> | |
<td>Smaller Llama-based instruct model for faster responses.</td> | |
</tr> | |
<tr> | |
<td>microsoft/Phi-3.5-mini-instruct</td> | |
<td>✅</td> | |
<td>A smaller instruct model from Microsoft.</td> | |
</tr> | |
<tr> | |
<td>Qwen/Qwen2.5-72B-Instruct</td> | |
<td>✅</td> | |
<td>Large-scale Qwen-based model.</td> | |
</tr> | |
</table> | |
""" | |
) | |
# Accordion for Parameters Overview | |
with gr.Accordion("Parameters Overview", open=False): | |
gr.Markdown( | |
""" | |
**Here is a brief overview of the main parameters for text generation:** | |
- **Max Tokens**: The maximum number of tokens (think of these as word-pieces) the model will generate in its response. | |
- **Temperature**: Controls how "creative" or random the output is. Lower values = more deterministic, higher values = more varied. | |
- **Top-P**: Similar to temperature, but uses nucleus sampling. Top-P defines the probability mass of the tokens to sample from. For example, `top_p=0.9` means "use the top 90% probable tokens." | |
- **Frequency Penalty**: A higher penalty discourages repeated tokens, helping reduce repetitive answers. | |
- **Seed**: You can set a seed for deterministic results. `-1` means random each time. | |
**Featured Models** can also be selected. If you want to override the model, you may specify a custom Hugging Face model path in the "Custom Model" text box. | |
--- | |
If you are new to text-generation parameters, the defaults are a great place to start! | |
""" | |
) | |
# ----------- | |
# TAB: CHAT | |
# ----------- | |
with gr.Tab("Chat"): | |
gr.Markdown("## Chat with the TextGen Model") | |
# Create a Chatbot component with a specified height | |
chatbot = gr.Chatbot(height=600) | |
print("Chatbot interface created.") | |
# Create textboxes and sliders for system prompt, tokens, and other parameters | |
system_message_box = gr.Textbox( | |
value="", | |
label="System message", | |
info="You can use this to provide instructions or context to the assistant. Leave empty if not needed." | |
) | |
max_tokens_slider = gr.Slider( | |
minimum=1, | |
maximum=4096, | |
value=512, | |
step=1, | |
label="Max new tokens", | |
info="Controls the maximum length of the output. Keep an eye on your usage!" | |
) | |
temperature_slider = gr.Slider( | |
minimum=0.1, | |
maximum=4.0, | |
value=0.7, | |
step=0.1, | |
label="Temperature", | |
info="Controls creativity. Higher values = more random replies, lower = more deterministic." | |
) | |
top_p_slider = gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-P", | |
info="Use nucleus sampling with probability mass cutoff. 1.0 includes all tokens." | |
) | |
frequency_penalty_slider = gr.Slider( | |
minimum=-2.0, | |
maximum=2.0, | |
value=0.0, | |
step=0.1, | |
label="Frequency Penalty", | |
info="Penalize repeated tokens to avoid repetition in output." | |
) | |
seed_slider = gr.Slider( | |
minimum=-1, | |
maximum=65535, | |
value=-1, | |
step=1, | |
label="Seed (-1 for random)", | |
info="Fixing a seed (0 to 65535) can make results reproducible. -1 picks a random seed each time." | |
) | |
# The custom_model_box is what the respond function sees as "custom_model" | |
custom_model_box = gr.Textbox( | |
value="", | |
label="Custom Model", | |
info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model." | |
) | |
# Function to update the custom model box when a featured model is selected | |
def set_custom_model_from_radio(selected): | |
print(f"Featured model selected: {selected}") | |
return selected | |
print("ChatInterface object created.") | |
# The main ChatInterface call | |
chat_interface = gr.ChatInterface( | |
fn=respond, # The function to handle responses | |
additional_inputs=[ | |
system_message_box, | |
max_tokens_slider, | |
temperature_slider, | |
top_p_slider, | |
frequency_penalty_slider, | |
seed_slider, | |
custom_model_box | |
], | |
fill_height=True, # Let the chatbot fill the container height | |
chatbot=chatbot, # The Chatbot UI component | |
theme="Nymbo/Nymbo_Theme", | |
) | |
print("Gradio interface for Chat created.") | |
# ----------- | |
# ADDING THE "FEATURED MODELS" ACCORDION (Same logic as before) | |
# ----------- | |
with gr.Accordion("Featured Models", open=False): | |
model_search_box = gr.Textbox( | |
label="Filter Models", | |
placeholder="Search for a featured model...", | |
lines=1 | |
) | |
print("Model search box created.") | |
# Sample list of popular text models | |
models_list = [ | |
"meta-llama/Llama-3.3-70B-Instruct", | |
"meta-llama/Llama-3.2-3B-Instruct", | |
"meta-llama/Llama-3.2-1B-Instruct", | |
"meta-llama/Llama-3.1-8B-Instruct", | |
"NousResearch/Hermes-3-Llama-3.1-8B", | |
"google/gemma-2-27b-it", | |
"google/gemma-2-9b-it", | |
"google/gemma-2-2b-it", | |
"mistralai/Mistral-Nemo-Instruct-2407", | |
"mistralai/Mixtral-8x7B-Instruct-v0.1", | |
"mistralai/Mistral-7B-Instruct-v0.3", | |
"Qwen/Qwen2.5-72B-Instruct", | |
"Qwen/QwQ-32B-Preview", | |
"PowerInfer/SmallThinker-3B-Preview", | |
"HuggingFaceTB/SmolLM2-1.7B-Instruct", | |
"TinyLlama/TinyLlama-1.1B-Chat-v1.0", | |
"microsoft/Phi-3.5-mini-instruct", | |
] | |
print("Models list initialized.") | |
featured_model_radio = gr.Radio( | |
label="Select a model below", | |
choices=models_list, | |
value="meta-llama/Llama-3.3-70B-Instruct", | |
interactive=True | |
) | |
print("Featured models radio button created.") | |
def filter_models(search_term): | |
print(f"Filtering models with search term: {search_term}") | |
filtered = [m for m in models_list if search_term.lower() in m.lower()] | |
print(f"Filtered models: {filtered}") | |
return gr.update(choices=filtered) | |
model_search_box.change( | |
fn=filter_models, | |
inputs=model_search_box, | |
outputs=featured_model_radio | |
) | |
print("Model search box change event linked.") | |
featured_model_radio.change( | |
fn=set_custom_model_from_radio, | |
inputs=featured_model_radio, | |
outputs=custom_model_box | |
) | |
print("Featured model radio button change event linked.") | |
print("Gradio interface initialized.") | |
# ------------------------ | |
# MAIN ENTRY POINT | |
# ------------------------ | |
if __name__ == "__main__": | |
print("Launching the demo application.") | |
demo.launch() |