Nymbo's picture
adding info tab with featured models table and parameters overview
62429d1 verified
raw
history blame
13.5 kB
import gradio as gr
from openai import OpenAI
import os
# -------------------
# SERVERLESS-TEXTGEN-HUB
# -------------------
#
# This version has been updated to include an "Information" tab above the Chat tab.
# The Information tab has two accordions:
# - "Featured Models" which displays a simple table
# - "Parameters Overview" which contains markdown describing the settings
#
# The Chat tab contains the existing chatbot UI.
# -------------------
# SETUP AND CONFIG
# -------------------
# Retrieve the access token from the environment variable
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")
# Initialize the OpenAI-like client (Hugging Face Inference API) with your token
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1/",
api_key=ACCESS_TOKEN,
)
print("OpenAI client initialized.")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
custom_model
):
"""
This function handles the chatbot response. It takes in:
- message: the user's new message
- history: the list of previous messages, each as a tuple (user_msg, assistant_msg)
- system_message: the system prompt
- max_tokens: the maximum number of tokens to generate in the response
- temperature: sampling temperature
- top_p: top-p (nucleus) sampling
- frequency_penalty: penalize repeated tokens in the output
- seed: a fixed seed for reproducibility; -1 will mean 'random'
- custom_model: the final model name in use, which may be set by selecting from the Featured Models radio or by typing a custom model
"""
print(f"Received message: {message}")
print(f"History: {history}")
print(f"System message: {system_message}")
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
print(f"Selected model (custom_model): {custom_model}")
# Convert seed to None if -1 (meaning random)
if seed == -1:
seed = None
# Construct the messages array required by the HF Inference API
messages = [{"role": "system", "content": system_message}]
print("Initial messages array constructed.")
# Add conversation history to the context
for val in history:
user_part = val[0] # Extract user message from the tuple
assistant_part = val[1] # Extract assistant message
if user_part:
messages.append({"role": "user", "content": user_part})
print(f"Added user message to context: {user_part}")
if assistant_part:
messages.append({"role": "assistant", "content": assistant_part})
print(f"Added assistant message to context: {assistant_part}")
# Append the latest user message
messages.append({"role": "user", "content": message})
print("Latest user message appended.")
# If user provided a model, use that; otherwise, fall back to a default model
model_to_use = custom_model.strip() if custom_model.strip() != "" else "meta-llama/Llama-3.3-70B-Instruct"
print(f"Model selected for inference: {model_to_use}")
# Start with an empty string to build the streamed response
response_text = ""
print("Sending request to Hugging Face Inference API via OpenAI-like client...")
# Make the streaming request to the HF Inference API
for message_chunk in client.chat.completions.create(
model=model_to_use,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
frequency_penalty=frequency_penalty,
seed=seed,
messages=messages,
):
# Extract the token text from the response chunk
token_text = message_chunk.choices[0].delta.content
print(f"Received token: {token_text}")
response_text += token_text
# Yield the partial response to Gradio so it can display in real-time
yield response_text
print("Completed response generation.")
# ----------------------
# BUILDING THE INTERFACE
# ----------------------
# We will use a "Blocks" layout with two tabs:
# 1) "Information" tab, which shows helpful info and a table of "Featured Models"
# 2) "Chat" tab, which holds our ChatInterface and associated controls
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
# -----------------
# TAB: INFORMATION
# -----------------
with gr.Tab("Information"):
# You can add instructions, disclaimers, or helpful text here
gr.Markdown("## Welcome to Serverless-TextGen-Hub - Information")
# Accordion for Featured Models (table)
with gr.Accordion("Featured Models (WiP)", open=False):
gr.HTML(
"""
<p><a href="https://huggingface.co/models?inference=warm&pipeline_tag=chat&sort=trending" target="_blank">See all available text models on Hugging Face</a></p>
<table style="width:100%; text-align:center; margin:auto;">
<tr>
<th>Model Name</th>
<th>Supported</th>
<th>Notes</th>
</tr>
<tr>
<td>meta-llama/Llama-3.3-70B-Instruct</td>
<td>✅</td>
<td>Default model, if none is provided in the 'Custom Model' box.</td>
</tr>
<tr>
<td>meta-llama/Llama-3.2-3B-Instruct</td>
<td>✅</td>
<td>Smaller Llama-based instruct model for faster responses.</td>
</tr>
<tr>
<td>microsoft/Phi-3.5-mini-instruct</td>
<td>✅</td>
<td>A smaller instruct model from Microsoft.</td>
</tr>
<tr>
<td>Qwen/Qwen2.5-72B-Instruct</td>
<td>✅</td>
<td>Large-scale Qwen-based model.</td>
</tr>
</table>
"""
)
# Accordion for Parameters Overview
with gr.Accordion("Parameters Overview", open=False):
gr.Markdown(
"""
**Here is a brief overview of the main parameters for text generation:**
- **Max Tokens**: The maximum number of tokens (think of these as word-pieces) the model will generate in its response.
- **Temperature**: Controls how "creative" or random the output is. Lower values = more deterministic, higher values = more varied.
- **Top-P**: Similar to temperature, but uses nucleus sampling. Top-P defines the probability mass of the tokens to sample from. For example, `top_p=0.9` means "use the top 90% probable tokens."
- **Frequency Penalty**: A higher penalty discourages repeated tokens, helping reduce repetitive answers.
- **Seed**: You can set a seed for deterministic results. `-1` means random each time.
**Featured Models** can also be selected. If you want to override the model, you may specify a custom Hugging Face model path in the "Custom Model" text box.
---
If you are new to text-generation parameters, the defaults are a great place to start!
"""
)
# -----------
# TAB: CHAT
# -----------
with gr.Tab("Chat"):
gr.Markdown("## Chat with the TextGen Model")
# Create a Chatbot component with a specified height
chatbot = gr.Chatbot(height=600)
print("Chatbot interface created.")
# Create textboxes and sliders for system prompt, tokens, and other parameters
system_message_box = gr.Textbox(
value="",
label="System message",
info="You can use this to provide instructions or context to the assistant. Leave empty if not needed."
)
max_tokens_slider = gr.Slider(
minimum=1,
maximum=4096,
value=512,
step=1,
label="Max new tokens",
info="Controls the maximum length of the output. Keep an eye on your usage!"
)
temperature_slider = gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.7,
step=0.1,
label="Temperature",
info="Controls creativity. Higher values = more random replies, lower = more deterministic."
)
top_p_slider = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-P",
info="Use nucleus sampling with probability mass cutoff. 1.0 includes all tokens."
)
frequency_penalty_slider = gr.Slider(
minimum=-2.0,
maximum=2.0,
value=0.0,
step=0.1,
label="Frequency Penalty",
info="Penalize repeated tokens to avoid repetition in output."
)
seed_slider = gr.Slider(
minimum=-1,
maximum=65535,
value=-1,
step=1,
label="Seed (-1 for random)",
info="Fixing a seed (0 to 65535) can make results reproducible. -1 picks a random seed each time."
)
# The custom_model_box is what the respond function sees as "custom_model"
custom_model_box = gr.Textbox(
value="",
label="Custom Model",
info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model."
)
# Function to update the custom model box when a featured model is selected
def set_custom_model_from_radio(selected):
print(f"Featured model selected: {selected}")
return selected
print("ChatInterface object created.")
# The main ChatInterface call
chat_interface = gr.ChatInterface(
fn=respond, # The function to handle responses
additional_inputs=[
system_message_box,
max_tokens_slider,
temperature_slider,
top_p_slider,
frequency_penalty_slider,
seed_slider,
custom_model_box
],
fill_height=True, # Let the chatbot fill the container height
chatbot=chatbot, # The Chatbot UI component
theme="Nymbo/Nymbo_Theme",
)
print("Gradio interface for Chat created.")
# -----------
# ADDING THE "FEATURED MODELS" ACCORDION (Same logic as before)
# -----------
with gr.Accordion("Featured Models", open=False):
model_search_box = gr.Textbox(
label="Filter Models",
placeholder="Search for a featured model...",
lines=1
)
print("Model search box created.")
# Sample list of popular text models
models_list = [
"meta-llama/Llama-3.3-70B-Instruct",
"meta-llama/Llama-3.2-3B-Instruct",
"meta-llama/Llama-3.2-1B-Instruct",
"meta-llama/Llama-3.1-8B-Instruct",
"NousResearch/Hermes-3-Llama-3.1-8B",
"google/gemma-2-27b-it",
"google/gemma-2-9b-it",
"google/gemma-2-2b-it",
"mistralai/Mistral-Nemo-Instruct-2407",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"mistralai/Mistral-7B-Instruct-v0.3",
"Qwen/Qwen2.5-72B-Instruct",
"Qwen/QwQ-32B-Preview",
"PowerInfer/SmallThinker-3B-Preview",
"HuggingFaceTB/SmolLM2-1.7B-Instruct",
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
"microsoft/Phi-3.5-mini-instruct",
]
print("Models list initialized.")
featured_model_radio = gr.Radio(
label="Select a model below",
choices=models_list,
value="meta-llama/Llama-3.3-70B-Instruct",
interactive=True
)
print("Featured models radio button created.")
def filter_models(search_term):
print(f"Filtering models with search term: {search_term}")
filtered = [m for m in models_list if search_term.lower() in m.lower()]
print(f"Filtered models: {filtered}")
return gr.update(choices=filtered)
model_search_box.change(
fn=filter_models,
inputs=model_search_box,
outputs=featured_model_radio
)
print("Model search box change event linked.")
featured_model_radio.change(
fn=set_custom_model_from_radio,
inputs=featured_model_radio,
outputs=custom_model_box
)
print("Featured model radio button change event linked.")
print("Gradio interface initialized.")
# ------------------------
# MAIN ENTRY POINT
# ------------------------
if __name__ == "__main__":
print("Launching the demo application.")
demo.launch()