import gradio as gr from openai import OpenAI import os # ------------------- # SERVERLESS-TEXTGEN-HUB # ------------------- # # This version has been updated to include an "Information" tab above the Chat tab. # The Information tab has two accordions: # - "Featured Models" which displays a simple table # - "Parameters Overview" which contains markdown describing the settings # # The Chat tab contains the existing chatbot UI. # ------------------- # SETUP AND CONFIG # ------------------- # Retrieve the access token from the environment variable ACCESS_TOKEN = os.getenv("HF_TOKEN") print("Access token loaded.") # Initialize the OpenAI-like client (Hugging Face Inference API) with your token client = OpenAI( base_url="https://api-inference.huggingface.co/v1/", api_key=ACCESS_TOKEN, ) print("OpenAI client initialized.") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, frequency_penalty, seed, custom_model ): """ This function handles the chatbot response. It takes in: - message: the user's new message - history: the list of previous messages, each as a tuple (user_msg, assistant_msg) - system_message: the system prompt - max_tokens: the maximum number of tokens to generate in the response - temperature: sampling temperature - top_p: top-p (nucleus) sampling - frequency_penalty: penalize repeated tokens in the output - seed: a fixed seed for reproducibility; -1 will mean 'random' - custom_model: the final model name in use, which may be set by selecting from the Featured Models radio or by typing a custom model """ print(f"Received message: {message}") print(f"History: {history}") print(f"System message: {system_message}") print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}") print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}") print(f"Selected model (custom_model): {custom_model}") # Convert seed to None if -1 (meaning random) if seed == -1: seed = None # Construct the messages array required by the HF Inference API messages = [{"role": "system", "content": system_message}] print("Initial messages array constructed.") # Add conversation history to the context for val in history: user_part = val[0] # Extract user message from the tuple assistant_part = val[1] # Extract assistant message if user_part: messages.append({"role": "user", "content": user_part}) print(f"Added user message to context: {user_part}") if assistant_part: messages.append({"role": "assistant", "content": assistant_part}) print(f"Added assistant message to context: {assistant_part}") # Append the latest user message messages.append({"role": "user", "content": message}) print("Latest user message appended.") # If user provided a model, use that; otherwise, fall back to a default model model_to_use = custom_model.strip() if custom_model.strip() != "" else "meta-llama/Llama-3.3-70B-Instruct" print(f"Model selected for inference: {model_to_use}") # Start with an empty string to build the streamed response response_text = "" print("Sending request to Hugging Face Inference API via OpenAI-like client...") # Make the streaming request to the HF Inference API for message_chunk in client.chat.completions.create( model=model_to_use, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, frequency_penalty=frequency_penalty, seed=seed, messages=messages, ): # Extract the token text from the response chunk token_text = message_chunk.choices[0].delta.content print(f"Received token: {token_text}") response_text += token_text # Yield the partial response to Gradio so it can display in real-time yield response_text print("Completed response generation.") # ---------------------- # BUILDING THE INTERFACE # ---------------------- # We will use a "Blocks" layout with two tabs: # 1) "Information" tab, which shows helpful info and a table of "Featured Models" # 2) "Chat" tab, which holds our ChatInterface and associated controls with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo: # ----------------- # TAB: INFORMATION # ----------------- with gr.Tab("Information"): # You can add instructions, disclaimers, or helpful text here gr.Markdown("## Welcome to Serverless-TextGen-Hub - Information") # Accordion for Featured Models (table) with gr.Accordion("Featured Models (WiP)", open=False): gr.HTML( """

See all available text models on Hugging Face

Model Name Supported Notes
meta-llama/Llama-3.3-70B-Instruct Default model, if none is provided in the 'Custom Model' box.
meta-llama/Llama-3.2-3B-Instruct Smaller Llama-based instruct model for faster responses.
microsoft/Phi-3.5-mini-instruct A smaller instruct model from Microsoft.
Qwen/Qwen2.5-72B-Instruct Large-scale Qwen-based model.
""" ) # Accordion for Parameters Overview with gr.Accordion("Parameters Overview", open=False): gr.Markdown( """ **Here is a brief overview of the main parameters for text generation:** - **Max Tokens**: The maximum number of tokens (think of these as word-pieces) the model will generate in its response. - **Temperature**: Controls how "creative" or random the output is. Lower values = more deterministic, higher values = more varied. - **Top-P**: Similar to temperature, but uses nucleus sampling. Top-P defines the probability mass of the tokens to sample from. For example, `top_p=0.9` means "use the top 90% probable tokens." - **Frequency Penalty**: A higher penalty discourages repeated tokens, helping reduce repetitive answers. - **Seed**: You can set a seed for deterministic results. `-1` means random each time. **Featured Models** can also be selected. If you want to override the model, you may specify a custom Hugging Face model path in the "Custom Model" text box. --- If you are new to text-generation parameters, the defaults are a great place to start! """ ) # ----------- # TAB: CHAT # ----------- with gr.Tab("Chat"): gr.Markdown("## Chat with the TextGen Model") # Create a Chatbot component with a specified height chatbot = gr.Chatbot(height=600) print("Chatbot interface created.") # Create textboxes and sliders for system prompt, tokens, and other parameters system_message_box = gr.Textbox( value="", label="System message", info="You can use this to provide instructions or context to the assistant. Leave empty if not needed." ) max_tokens_slider = gr.Slider( minimum=1, maximum=4096, value=512, step=1, label="Max new tokens", info="Controls the maximum length of the output. Keep an eye on your usage!" ) temperature_slider = gr.Slider( minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature", info="Controls creativity. Higher values = more random replies, lower = more deterministic." ) top_p_slider = gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P", info="Use nucleus sampling with probability mass cutoff. 1.0 includes all tokens." ) frequency_penalty_slider = gr.Slider( minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty", info="Penalize repeated tokens to avoid repetition in output." ) seed_slider = gr.Slider( minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)", info="Fixing a seed (0 to 65535) can make results reproducible. -1 picks a random seed each time." ) # The custom_model_box is what the respond function sees as "custom_model" custom_model_box = gr.Textbox( value="", label="Custom Model", info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model." ) # Function to update the custom model box when a featured model is selected def set_custom_model_from_radio(selected): print(f"Featured model selected: {selected}") return selected print("ChatInterface object created.") # The main ChatInterface call chat_interface = gr.ChatInterface( fn=respond, # The function to handle responses additional_inputs=[ system_message_box, max_tokens_slider, temperature_slider, top_p_slider, frequency_penalty_slider, seed_slider, custom_model_box ], fill_height=True, # Let the chatbot fill the container height chatbot=chatbot, # The Chatbot UI component theme="Nymbo/Nymbo_Theme", ) print("Gradio interface for Chat created.") # ----------- # ADDING THE "FEATURED MODELS" ACCORDION (Same logic as before) # ----------- with gr.Accordion("Featured Models", open=False): model_search_box = gr.Textbox( label="Filter Models", placeholder="Search for a featured model...", lines=1 ) print("Model search box created.") # Sample list of popular text models models_list = [ "meta-llama/Llama-3.3-70B-Instruct", "meta-llama/Llama-3.2-3B-Instruct", "meta-llama/Llama-3.2-1B-Instruct", "meta-llama/Llama-3.1-8B-Instruct", "NousResearch/Hermes-3-Llama-3.1-8B", "google/gemma-2-27b-it", "google/gemma-2-9b-it", "google/gemma-2-2b-it", "mistralai/Mistral-Nemo-Instruct-2407", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.3", "Qwen/Qwen2.5-72B-Instruct", "Qwen/QwQ-32B-Preview", "PowerInfer/SmallThinker-3B-Preview", "HuggingFaceTB/SmolLM2-1.7B-Instruct", "TinyLlama/TinyLlama-1.1B-Chat-v1.0", "microsoft/Phi-3.5-mini-instruct", ] print("Models list initialized.") featured_model_radio = gr.Radio( label="Select a model below", choices=models_list, value="meta-llama/Llama-3.3-70B-Instruct", interactive=True ) print("Featured models radio button created.") def filter_models(search_term): print(f"Filtering models with search term: {search_term}") filtered = [m for m in models_list if search_term.lower() in m.lower()] print(f"Filtered models: {filtered}") return gr.update(choices=filtered) model_search_box.change( fn=filter_models, inputs=model_search_box, outputs=featured_model_radio ) print("Model search box change event linked.") featured_model_radio.change( fn=set_custom_model_from_radio, inputs=featured_model_radio, outputs=custom_model_box ) print("Featured model radio button change event linked.") print("Gradio interface initialized.") # ------------------------ # MAIN ENTRY POINT # ------------------------ if __name__ == "__main__": print("Launching the demo application.") demo.launch()