Spaces:
Running
Running
File size: 13,538 Bytes
038f313 fab24df c5a20a4 038f313 62429d1 880ced6 e13eb1b 038f313 62429d1 038f313 e13eb1b 038f313 27c8b8d 038f313 3a64d68 98674ca c5a20a4 038f313 e13eb1b 7255410 be3f346 e13eb1b 7255410 27c8b8d be3f346 f7c4208 c5a20a4 52ad57a 038f313 62429d1 c5a20a4 d6c98d8 27c8b8d c5a20a4 27c8b8d d6c98d8 62429d1 27c8b8d 62429d1 27c8b8d 62429d1 27c8b8d c5a20a4 27c8b8d d6c98d8 27c8b8d d6c98d8 c5a20a4 77298b9 62429d1 27c8b8d 62429d1 27c8b8d 62429d1 27c8b8d 62429d1 c5a20a4 62429d1 542c2ac e13eb1b f7c4208 62429d1 be3f346 62429d1 c5a20a4 62429d1 be3f346 62429d1 be3f346 62429d1 be3f346 62429d1 e7683ca 62429d1 769901b 62429d1 769901b 62429d1 be3f346 769901b 62429d1 be3f346 62429d1 be3f346 769901b 62429d1 77298b9 27c8b8d 77298b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
import gradio as gr
from openai import OpenAI
import os
# -------------------
# SERVERLESS-TEXTGEN-HUB
# -------------------
#
# This version has been updated to include an "Information" tab above the Chat tab.
# The Information tab has two accordions:
# - "Featured Models" which displays a simple table
# - "Parameters Overview" which contains markdown describing the settings
#
# The Chat tab contains the existing chatbot UI.
# -------------------
# SETUP AND CONFIG
# -------------------
# Retrieve the access token from the environment variable
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")
# Initialize the OpenAI-like client (Hugging Face Inference API) with your token
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1/",
api_key=ACCESS_TOKEN,
)
print("OpenAI client initialized.")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
custom_model
):
"""
This function handles the chatbot response. It takes in:
- message: the user's new message
- history: the list of previous messages, each as a tuple (user_msg, assistant_msg)
- system_message: the system prompt
- max_tokens: the maximum number of tokens to generate in the response
- temperature: sampling temperature
- top_p: top-p (nucleus) sampling
- frequency_penalty: penalize repeated tokens in the output
- seed: a fixed seed for reproducibility; -1 will mean 'random'
- custom_model: the final model name in use, which may be set by selecting from the Featured Models radio or by typing a custom model
"""
print(f"Received message: {message}")
print(f"History: {history}")
print(f"System message: {system_message}")
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
print(f"Selected model (custom_model): {custom_model}")
# Convert seed to None if -1 (meaning random)
if seed == -1:
seed = None
# Construct the messages array required by the HF Inference API
messages = [{"role": "system", "content": system_message}]
print("Initial messages array constructed.")
# Add conversation history to the context
for val in history:
user_part = val[0] # Extract user message from the tuple
assistant_part = val[1] # Extract assistant message
if user_part:
messages.append({"role": "user", "content": user_part})
print(f"Added user message to context: {user_part}")
if assistant_part:
messages.append({"role": "assistant", "content": assistant_part})
print(f"Added assistant message to context: {assistant_part}")
# Append the latest user message
messages.append({"role": "user", "content": message})
print("Latest user message appended.")
# If user provided a model, use that; otherwise, fall back to a default model
model_to_use = custom_model.strip() if custom_model.strip() != "" else "meta-llama/Llama-3.3-70B-Instruct"
print(f"Model selected for inference: {model_to_use}")
# Start with an empty string to build the streamed response
response_text = ""
print("Sending request to Hugging Face Inference API via OpenAI-like client...")
# Make the streaming request to the HF Inference API
for message_chunk in client.chat.completions.create(
model=model_to_use,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
frequency_penalty=frequency_penalty,
seed=seed,
messages=messages,
):
# Extract the token text from the response chunk
token_text = message_chunk.choices[0].delta.content
print(f"Received token: {token_text}")
response_text += token_text
# Yield the partial response to Gradio so it can display in real-time
yield response_text
print("Completed response generation.")
# ----------------------
# BUILDING THE INTERFACE
# ----------------------
# We will use a "Blocks" layout with two tabs:
# 1) "Information" tab, which shows helpful info and a table of "Featured Models"
# 2) "Chat" tab, which holds our ChatInterface and associated controls
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
# -----------------
# TAB: INFORMATION
# -----------------
with gr.Tab("Information"):
# You can add instructions, disclaimers, or helpful text here
gr.Markdown("## Welcome to Serverless-TextGen-Hub - Information")
# Accordion for Featured Models (table)
with gr.Accordion("Featured Models (WiP)", open=False):
gr.HTML(
"""
<p><a href="https://huggingface.co/models?inference=warm&pipeline_tag=chat&sort=trending" target="_blank">See all available text models on Hugging Face</a></p>
<table style="width:100%; text-align:center; margin:auto;">
<tr>
<th>Model Name</th>
<th>Supported</th>
<th>Notes</th>
</tr>
<tr>
<td>meta-llama/Llama-3.3-70B-Instruct</td>
<td>✅</td>
<td>Default model, if none is provided in the 'Custom Model' box.</td>
</tr>
<tr>
<td>meta-llama/Llama-3.2-3B-Instruct</td>
<td>✅</td>
<td>Smaller Llama-based instruct model for faster responses.</td>
</tr>
<tr>
<td>microsoft/Phi-3.5-mini-instruct</td>
<td>✅</td>
<td>A smaller instruct model from Microsoft.</td>
</tr>
<tr>
<td>Qwen/Qwen2.5-72B-Instruct</td>
<td>✅</td>
<td>Large-scale Qwen-based model.</td>
</tr>
</table>
"""
)
# Accordion for Parameters Overview
with gr.Accordion("Parameters Overview", open=False):
gr.Markdown(
"""
**Here is a brief overview of the main parameters for text generation:**
- **Max Tokens**: The maximum number of tokens (think of these as word-pieces) the model will generate in its response.
- **Temperature**: Controls how "creative" or random the output is. Lower values = more deterministic, higher values = more varied.
- **Top-P**: Similar to temperature, but uses nucleus sampling. Top-P defines the probability mass of the tokens to sample from. For example, `top_p=0.9` means "use the top 90% probable tokens."
- **Frequency Penalty**: A higher penalty discourages repeated tokens, helping reduce repetitive answers.
- **Seed**: You can set a seed for deterministic results. `-1` means random each time.
**Featured Models** can also be selected. If you want to override the model, you may specify a custom Hugging Face model path in the "Custom Model" text box.
---
If you are new to text-generation parameters, the defaults are a great place to start!
"""
)
# -----------
# TAB: CHAT
# -----------
with gr.Tab("Chat"):
gr.Markdown("## Chat with the TextGen Model")
# Create a Chatbot component with a specified height
chatbot = gr.Chatbot(height=600)
print("Chatbot interface created.")
# Create textboxes and sliders for system prompt, tokens, and other parameters
system_message_box = gr.Textbox(
value="",
label="System message",
info="You can use this to provide instructions or context to the assistant. Leave empty if not needed."
)
max_tokens_slider = gr.Slider(
minimum=1,
maximum=4096,
value=512,
step=1,
label="Max new tokens",
info="Controls the maximum length of the output. Keep an eye on your usage!"
)
temperature_slider = gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.7,
step=0.1,
label="Temperature",
info="Controls creativity. Higher values = more random replies, lower = more deterministic."
)
top_p_slider = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-P",
info="Use nucleus sampling with probability mass cutoff. 1.0 includes all tokens."
)
frequency_penalty_slider = gr.Slider(
minimum=-2.0,
maximum=2.0,
value=0.0,
step=0.1,
label="Frequency Penalty",
info="Penalize repeated tokens to avoid repetition in output."
)
seed_slider = gr.Slider(
minimum=-1,
maximum=65535,
value=-1,
step=1,
label="Seed (-1 for random)",
info="Fixing a seed (0 to 65535) can make results reproducible. -1 picks a random seed each time."
)
# The custom_model_box is what the respond function sees as "custom_model"
custom_model_box = gr.Textbox(
value="",
label="Custom Model",
info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model."
)
# Function to update the custom model box when a featured model is selected
def set_custom_model_from_radio(selected):
print(f"Featured model selected: {selected}")
return selected
print("ChatInterface object created.")
# The main ChatInterface call
chat_interface = gr.ChatInterface(
fn=respond, # The function to handle responses
additional_inputs=[
system_message_box,
max_tokens_slider,
temperature_slider,
top_p_slider,
frequency_penalty_slider,
seed_slider,
custom_model_box
],
fill_height=True, # Let the chatbot fill the container height
chatbot=chatbot, # The Chatbot UI component
theme="Nymbo/Nymbo_Theme",
)
print("Gradio interface for Chat created.")
# -----------
# ADDING THE "FEATURED MODELS" ACCORDION (Same logic as before)
# -----------
with gr.Accordion("Featured Models", open=False):
model_search_box = gr.Textbox(
label="Filter Models",
placeholder="Search for a featured model...",
lines=1
)
print("Model search box created.")
# Sample list of popular text models
models_list = [
"meta-llama/Llama-3.3-70B-Instruct",
"meta-llama/Llama-3.2-3B-Instruct",
"meta-llama/Llama-3.2-1B-Instruct",
"meta-llama/Llama-3.1-8B-Instruct",
"NousResearch/Hermes-3-Llama-3.1-8B",
"google/gemma-2-27b-it",
"google/gemma-2-9b-it",
"google/gemma-2-2b-it",
"mistralai/Mistral-Nemo-Instruct-2407",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"mistralai/Mistral-7B-Instruct-v0.3",
"Qwen/Qwen2.5-72B-Instruct",
"Qwen/QwQ-32B-Preview",
"PowerInfer/SmallThinker-3B-Preview",
"HuggingFaceTB/SmolLM2-1.7B-Instruct",
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
"microsoft/Phi-3.5-mini-instruct",
]
print("Models list initialized.")
featured_model_radio = gr.Radio(
label="Select a model below",
choices=models_list,
value="meta-llama/Llama-3.3-70B-Instruct",
interactive=True
)
print("Featured models radio button created.")
def filter_models(search_term):
print(f"Filtering models with search term: {search_term}")
filtered = [m for m in models_list if search_term.lower() in m.lower()]
print(f"Filtered models: {filtered}")
return gr.update(choices=filtered)
model_search_box.change(
fn=filter_models,
inputs=model_search_box,
outputs=featured_model_radio
)
print("Model search box change event linked.")
featured_model_radio.change(
fn=set_custom_model_from_radio,
inputs=featured_model_radio,
outputs=custom_model_box
)
print("Featured model radio button change event linked.")
print("Gradio interface initialized.")
# ------------------------
# MAIN ENTRY POINT
# ------------------------
if __name__ == "__main__":
print("Launching the demo application.")
demo.launch() |