Spaces:
Running
Running
adding debugging logs and excessive comments, will return in the morning :)
Browse files
app.py
CHANGED
@@ -50,22 +50,24 @@ def respond(
|
|
50 |
|
51 |
# Construct the messages array required by the API
|
52 |
messages = [{"role": "system", "content": system_message}]
|
|
|
53 |
|
54 |
# Add conversation history to the context
|
55 |
for val in history:
|
56 |
-
user_part = val[0]
|
57 |
-
assistant_part = val[1]
|
58 |
if user_part:
|
59 |
-
messages.append({"role": "user", "content": user_part})
|
60 |
print(f"Added user message to context: {user_part}")
|
61 |
if assistant_part:
|
62 |
-
messages.append({"role": "assistant", "content": assistant_part})
|
63 |
print(f"Added assistant message to context: {assistant_part}")
|
64 |
|
65 |
# Append the latest user message
|
66 |
messages.append({"role": "user", "content": message})
|
|
|
67 |
|
68 |
-
# If user provided a model, use that; otherwise, fall back to a default
|
69 |
model_to_use = custom_model.strip() if custom_model.strip() != "" else "meta-llama/Llama-3.3-70B-Instruct"
|
70 |
print(f"Model selected for inference: {model_to_use}")
|
71 |
|
@@ -76,13 +78,13 @@ def respond(
|
|
76 |
# Make the streaming request to the HF Inference API via openai-like client
|
77 |
for message_chunk in client.chat.completions.create(
|
78 |
model=model_to_use, # Use either the user-provided or default model
|
79 |
-
max_tokens=max_tokens,
|
80 |
-
stream=True, #
|
81 |
-
temperature=temperature,
|
82 |
-
top_p=top_p,
|
83 |
-
frequency_penalty=frequency_penalty,
|
84 |
-
seed=seed,
|
85 |
-
messages=messages,
|
86 |
):
|
87 |
# Extract the token text from the response chunk
|
88 |
token_text = message_chunk.choices[0].delta.content
|
@@ -98,91 +100,94 @@ def respond(
|
|
98 |
# -------------------------
|
99 |
|
100 |
# Create a Chatbot component with a specified height
|
101 |
-
chatbot = gr.Chatbot(height=600)
|
102 |
print("Chatbot interface created.")
|
103 |
|
104 |
-
#
|
105 |
-
system_message_box = gr.Textbox(value="", label="System message")
|
106 |
|
107 |
max_tokens_slider = gr.Slider(
|
108 |
-
minimum=1,
|
109 |
-
maximum=4096,
|
110 |
-
value=512,
|
111 |
-
step=1,
|
112 |
-
label="Max new tokens"
|
113 |
)
|
114 |
temperature_slider = gr.Slider(
|
115 |
-
minimum=0.1,
|
116 |
-
maximum=4.0,
|
117 |
-
value=0.7,
|
118 |
-
step=0.1,
|
119 |
-
label="Temperature"
|
120 |
)
|
121 |
top_p_slider = gr.Slider(
|
122 |
-
minimum=0.1,
|
123 |
-
maximum=1.0,
|
124 |
-
value=0.95,
|
125 |
-
step=0.05,
|
126 |
-
label="Top-P"
|
127 |
)
|
128 |
frequency_penalty_slider = gr.Slider(
|
129 |
-
minimum=-2.0,
|
130 |
-
maximum=2.0,
|
131 |
-
value=0.0,
|
132 |
-
step=0.1,
|
133 |
-
label="Frequency Penalty"
|
134 |
)
|
135 |
seed_slider = gr.Slider(
|
136 |
-
minimum=-1,
|
137 |
-
maximum=65535,
|
138 |
-
value=-1,
|
139 |
-
step=1,
|
140 |
-
label="Seed (-1 for random)"
|
141 |
)
|
142 |
|
143 |
# The custom_model_box is what the respond function sees as "custom_model"
|
144 |
custom_model_box = gr.Textbox(
|
145 |
-
value="",
|
146 |
-
label="Custom Model",
|
147 |
-
info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model."
|
148 |
)
|
149 |
|
150 |
-
# Define a function that
|
151 |
def set_custom_model_from_radio(selected):
|
152 |
"""
|
153 |
This function will get triggered whenever someone picks a model from the 'Featured Models' radio.
|
154 |
We will update the Custom Model text box with that selection automatically.
|
155 |
"""
|
|
|
156 |
return selected
|
157 |
|
158 |
-
#
|
159 |
demo = gr.ChatInterface(
|
160 |
-
fn=respond,
|
161 |
-
# For ChatInterface, we can pass additional inputs in order to feed them into the "respond" function
|
162 |
additional_inputs=[
|
163 |
-
system_message_box,
|
164 |
-
max_tokens_slider,
|
165 |
-
temperature_slider,
|
166 |
-
top_p_slider,
|
167 |
-
frequency_penalty_slider,
|
168 |
-
seed_slider,
|
169 |
-
custom_model_box
|
170 |
],
|
171 |
-
fill_height=True,
|
172 |
-
chatbot=chatbot,
|
173 |
-
theme="Nymbo/Nymbo_Theme",
|
174 |
)
|
175 |
|
|
|
|
|
176 |
# -----------
|
177 |
# ADDING THE "FEATURED MODELS" ACCORDION
|
178 |
# -----------
|
179 |
with demo:
|
180 |
-
with gr.Accordion("Featured Models", open=False):
|
181 |
model_search_box = gr.Textbox(
|
182 |
-
label="Filter Models",
|
183 |
-
placeholder="Search for a featured model...",
|
184 |
-
lines=1
|
185 |
)
|
|
|
186 |
|
187 |
# Sample list of popular text models
|
188 |
models_list = [
|
@@ -204,32 +209,38 @@ with demo:
|
|
204 |
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
205 |
"microsoft/Phi-3.5-mini-instruct",
|
206 |
]
|
|
|
207 |
|
208 |
featured_model_radio = gr.Radio(
|
209 |
-
label="Select a model below",
|
210 |
-
choices=models_list,
|
211 |
-
value="meta-llama/Llama-3.3-70B-Instruct",
|
212 |
-
interactive=True
|
213 |
)
|
|
|
214 |
|
215 |
-
# Filter function for the radio
|
216 |
-
|
217 |
-
|
|
|
|
|
218 |
return gr.update(choices=filtered)
|
219 |
|
220 |
-
#
|
221 |
model_search_box.change(
|
222 |
-
fn=filter_models,
|
223 |
-
inputs=model_search_box,
|
224 |
-
outputs=featured_model_radio
|
225 |
)
|
|
|
226 |
|
227 |
-
#
|
228 |
featured_model_radio.change(
|
229 |
-
fn=set_custom_model_from_radio,
|
230 |
-
inputs=featured_model_radio,
|
231 |
-
outputs=custom_model_box
|
232 |
)
|
|
|
233 |
|
234 |
print("Gradio interface initialized.")
|
235 |
|
|
|
50 |
|
51 |
# Construct the messages array required by the API
|
52 |
messages = [{"role": "system", "content": system_message}]
|
53 |
+
print("Initial messages array constructed.")
|
54 |
|
55 |
# Add conversation history to the context
|
56 |
for val in history:
|
57 |
+
user_part = val[0] # Extract user message from the tuple
|
58 |
+
assistant_part = val[1] # Extract assistant message from the tuple
|
59 |
if user_part:
|
60 |
+
messages.append({"role": "user", "content": user_part}) # Append user message
|
61 |
print(f"Added user message to context: {user_part}")
|
62 |
if assistant_part:
|
63 |
+
messages.append({"role": "assistant", "content": assistant_part}) # Append assistant message
|
64 |
print(f"Added assistant message to context: {assistant_part}")
|
65 |
|
66 |
# Append the latest user message
|
67 |
messages.append({"role": "user", "content": message})
|
68 |
+
print("Latest user message appended.")
|
69 |
|
70 |
+
# If user provided a model, use that; otherwise, fall back to a default model
|
71 |
model_to_use = custom_model.strip() if custom_model.strip() != "" else "meta-llama/Llama-3.3-70B-Instruct"
|
72 |
print(f"Model selected for inference: {model_to_use}")
|
73 |
|
|
|
78 |
# Make the streaming request to the HF Inference API via openai-like client
|
79 |
for message_chunk in client.chat.completions.create(
|
80 |
model=model_to_use, # Use either the user-provided or default model
|
81 |
+
max_tokens=max_tokens, # Maximum tokens for the response
|
82 |
+
stream=True, # Enable streaming responses
|
83 |
+
temperature=temperature, # Adjust randomness in response
|
84 |
+
top_p=top_p, # Control diversity in response generation
|
85 |
+
frequency_penalty=frequency_penalty, # Penalize repeated phrases
|
86 |
+
seed=seed, # Set random seed for reproducibility
|
87 |
+
messages=messages, # Contextual conversation messages
|
88 |
):
|
89 |
# Extract the token text from the response chunk
|
90 |
token_text = message_chunk.choices[0].delta.content
|
|
|
100 |
# -------------------------
|
101 |
|
102 |
# Create a Chatbot component with a specified height
|
103 |
+
chatbot = gr.Chatbot(height=600) # Define the height of the chatbot interface
|
104 |
print("Chatbot interface created.")
|
105 |
|
106 |
+
# Create textboxes and sliders for system prompt, tokens, and other parameters
|
107 |
+
system_message_box = gr.Textbox(value="", label="System message") # Input box for system message
|
108 |
|
109 |
max_tokens_slider = gr.Slider(
|
110 |
+
minimum=1, # Minimum allowable tokens
|
111 |
+
maximum=4096, # Maximum allowable tokens
|
112 |
+
value=512, # Default value
|
113 |
+
step=1, # Increment step size
|
114 |
+
label="Max new tokens" # Slider label
|
115 |
)
|
116 |
temperature_slider = gr.Slider(
|
117 |
+
minimum=0.1, # Minimum temperature
|
118 |
+
maximum=4.0, # Maximum temperature
|
119 |
+
value=0.7, # Default value
|
120 |
+
step=0.1, # Increment step size
|
121 |
+
label="Temperature" # Slider label
|
122 |
)
|
123 |
top_p_slider = gr.Slider(
|
124 |
+
minimum=0.1, # Minimum top-p value
|
125 |
+
maximum=1.0, # Maximum top-p value
|
126 |
+
value=0.95, # Default value
|
127 |
+
step=0.05, # Increment step size
|
128 |
+
label="Top-P" # Slider label
|
129 |
)
|
130 |
frequency_penalty_slider = gr.Slider(
|
131 |
+
minimum=-2.0, # Minimum penalty
|
132 |
+
maximum=2.0, # Maximum penalty
|
133 |
+
value=0.0, # Default value
|
134 |
+
step=0.1, # Increment step size
|
135 |
+
label="Frequency Penalty" # Slider label
|
136 |
)
|
137 |
seed_slider = gr.Slider(
|
138 |
+
minimum=-1, # -1 for random seed
|
139 |
+
maximum=65535, # Maximum seed value
|
140 |
+
value=-1, # Default value
|
141 |
+
step=1, # Increment step size
|
142 |
+
label="Seed (-1 for random)" # Slider label
|
143 |
)
|
144 |
|
145 |
# The custom_model_box is what the respond function sees as "custom_model"
|
146 |
custom_model_box = gr.Textbox(
|
147 |
+
value="", # Default value
|
148 |
+
label="Custom Model", # Label for the textbox
|
149 |
+
info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model." # Additional info
|
150 |
)
|
151 |
|
152 |
+
# Define a function that updates the custom model box when a featured model is selected
|
153 |
def set_custom_model_from_radio(selected):
|
154 |
"""
|
155 |
This function will get triggered whenever someone picks a model from the 'Featured Models' radio.
|
156 |
We will update the Custom Model text box with that selection automatically.
|
157 |
"""
|
158 |
+
print(f"Featured model selected: {selected}") # Log selected model
|
159 |
return selected
|
160 |
|
161 |
+
# Create the main ChatInterface object
|
162 |
demo = gr.ChatInterface(
|
163 |
+
fn=respond, # The function to handle responses
|
|
|
164 |
additional_inputs=[
|
165 |
+
system_message_box, # System message input
|
166 |
+
max_tokens_slider, # Max tokens slider
|
167 |
+
temperature_slider, # Temperature slider
|
168 |
+
top_p_slider, # Top-P slider
|
169 |
+
frequency_penalty_slider, # Frequency penalty slider
|
170 |
+
seed_slider, # Seed slider
|
171 |
+
custom_model_box # Custom model input
|
172 |
],
|
173 |
+
fill_height=True, # Allow the chatbot to fill the container height
|
174 |
+
chatbot=chatbot, # Chatbot UI component
|
175 |
+
theme="Nymbo/Nymbo_Theme", # Theme for the interface
|
176 |
)
|
177 |
|
178 |
+
print("ChatInterface object created.")
|
179 |
+
|
180 |
# -----------
|
181 |
# ADDING THE "FEATURED MODELS" ACCORDION
|
182 |
# -----------
|
183 |
with demo:
|
184 |
+
with gr.Accordion("Featured Models", open=False): # Collapsible section for featured models
|
185 |
model_search_box = gr.Textbox(
|
186 |
+
label="Filter Models", # Label for the search box
|
187 |
+
placeholder="Search for a featured model...", # Placeholder text
|
188 |
+
lines=1 # Single-line input
|
189 |
)
|
190 |
+
print("Model search box created.")
|
191 |
|
192 |
# Sample list of popular text models
|
193 |
models_list = [
|
|
|
209 |
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
210 |
"microsoft/Phi-3.5-mini-instruct",
|
211 |
]
|
212 |
+
print("Models list initialized.")
|
213 |
|
214 |
featured_model_radio = gr.Radio(
|
215 |
+
label="Select a model below", # Label for the radio buttons
|
216 |
+
choices=models_list, # List of available models
|
217 |
+
value="meta-llama/Llama-3.3-70B-Instruct", # Default selection
|
218 |
+
interactive=True # Allow user interaction
|
219 |
)
|
220 |
+
print("Featured models radio button created.")
|
221 |
|
222 |
+
# Filter function for the radio button list
|
223 |
+
def filter_models(search_term):
|
224 |
+
print(f"Filtering models with search term: {search_term}") # Log the search term
|
225 |
+
filtered = [m for m in models_list if search_term.lower() in m.lower()] # Filter models by search term
|
226 |
+
print(f"Filtered models: {filtered}") # Log filtered models
|
227 |
return gr.update(choices=filtered)
|
228 |
|
229 |
+
# Update the radio list when the search box value changes
|
230 |
model_search_box.change(
|
231 |
+
fn=filter_models, # Function to filter models
|
232 |
+
inputs=model_search_box, # Input: search box value
|
233 |
+
outputs=featured_model_radio # Output: update radio button list
|
234 |
)
|
235 |
+
print("Model search box change event linked.")
|
236 |
|
237 |
+
# Update the custom model textbox when a featured model is selected
|
238 |
featured_model_radio.change(
|
239 |
+
fn=set_custom_model_from_radio, # Function to set custom model
|
240 |
+
inputs=featured_model_radio, # Input: selected model
|
241 |
+
outputs=custom_model_box # Output: update custom model textbox
|
242 |
)
|
243 |
+
print("Featured model radio button change event linked.")
|
244 |
|
245 |
print("Gradio interface initialized.")
|
246 |
|