Spaces:
Running
Running
File size: 7,655 Bytes
038f313 4c18bfc 038f313 880ced6 038f313 4c18bfc 038f313 69b4a5f 038f313 3a64d68 d735dab f7c4208 7d3730f 038f313 5b1509d f7c4208 a430d0d d735dab f7c4208 5b1509d 038f313 f7c4208 880ced6 f7c4208 038f313 f7c4208 038f313 f7c4208 038f313 f7c4208 5b1509d f7c4208 038f313 f7c4208 038f313 21137c4 038f313 f7c4208 5b1509d f7c4208 5b1509d 038f313 f7c4208 d735dab 4c18bfc f7c4208 542c2ac f7c4208 21137c4 f7c4208 21137c4 f7c4208 d735dab f7c4208 7d3730f f7c4208 7d3730f f7c4208 7d3730f f7c4208 21137c4 f7c4208 21137c4 f7c4208 21137c4 f7c4208 21137c4 f7c4208 21137c4 7d3730f d735dab f7c4208 21137c4 f7c4208 21137c4 f7c4208 21137c4 f7c4208 21137c4 f7c4208 21137c4 7d3730f f7c4208 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
import gradio as gr
from openai import OpenAI
import os
# Retrieve the access token from the environment variable
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")
# Initialize the OpenAI client with the Hugging Face Inference API endpoint
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1/",
api_key=ACCESS_TOKEN,
)
print("OpenAI client initialized.")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
model,
custom_model
):
"""
This function handles the chatbot response. It takes in:
- message: the user's new message
- history: the list of previous messages, each as a tuple (user_msg, assistant_msg)
- system_message: the system prompt
- max_tokens: the maximum number of tokens to generate in the response
- temperature: sampling temperature
- top_p: top-p (nucleus) sampling
- frequency_penalty: penalize repeated tokens in the output
- seed: a fixed seed for reproducibility; -1 will mean 'random'
- model: the selected model
- custom_model: a custom model provided by the user
"""
print(f"Received message: {message}")
print(f"History: {history}")
print(f"System message: {system_message}")
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
print(f"Model: {model}, Custom Model: {custom_model}")
# Convert seed to None if -1 (meaning random)
if seed == -1:
seed = None
# Use custom model if provided, otherwise use selected model
if custom_model.strip() != "":
model_to_use = custom_model.strip()
else:
model_to_use = model
# Construct the messages array required by the API
messages = [{"role": "system", "content": system_message}]
# Add conversation history to the context
for val in history:
user_part = val[0]
assistant_part = val[1]
if user_part:
messages.append({"role": "user", "content": user_part})
print(f"Added user message to context: {user_part}")
if assistant_part:
messages.append({"role": "assistant", "content": assistant_part})
print(f"Added assistant message to context: {assistant_part}")
# Append the latest user message
messages.append({"role": "user", "content": message})
# Start with an empty string to build the response as tokens stream in
response = ""
print("Sending request to OpenAI API.")
# Make the streaming request to the HF Inference API via openai-like client
for message_chunk in client.chat.completions.create(
model=model_to_use, # Use the selected or custom model
max_tokens=max_tokens,
stream=True, # Stream the response
temperature=temperature,
top_p=top_p,
frequency_penalty=frequency_penalty,
seed=seed,
messages=messages,
):
# Extract the token text from the response chunk
token_text = message_chunk.choices[0].delta.content
print(f"Received token: {token_text}")
response += token_text
yield response
print("Completed response generation.")
# Create a Chatbot component with a specified height
chatbot = gr.Chatbot(height=600)
print("Chatbot interface created.")
# List of placeholder models for demonstration
models_list = [
"meta-llama/Llama-3.3-70B-Instruct",
"meta-llama/Llama-2-70B-chat",
"google/flan-t5-xl"
]
# Function to filter models based on search input
def filter_models(search_term):
filtered_models = [m for m in models_list if search_term.lower() in m.lower()]
return gr.update(choices=filtered_models)
# Create the Gradio ChatInterface
# Adding additional fields for model selection and parameters
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="", label="System message"),
gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"),
gr.Slider(
minimum=-2.0,
maximum=2.0,
value=0.0,
step=0.1,
label="Frequency Penalty"
),
gr.Slider(
minimum=-1,
maximum=65535, # Arbitrary upper limit for demonstration
value=-1,
step=1,
label="Seed (-1 for random)"
),
gr.Textbox(label="Custom Model", placeholder="Enter custom model path here"),
gr.Accordion("Featured Models", open=True).update(
gr.Column([
gr.Textbox(label="Filter Models", placeholder="Search for a featured model...").change(
filter_models, inputs="__self__", outputs="model"
),
gr.Radio(label="Select a model below", value="meta-llama/Llama-3.3-70B-Instruct", choices=models_list, interactive=True, elem_id="model-radio")
])
)
],
fill_height=True,
chatbot=chatbot,
theme="Nymbo/Nymbo_Theme",
)
# Adding an "Information" tab with accordions for "Featured Models" and "Parameters Overview"
with gr.Blocks(theme='Nymbo/Nymbo_Theme') as demo:
with gr.Tab("Chat"):
gr.Markdown("## Chat with the Model")
chatbot.render()
with gr.Tab("Information"):
with gr.Accordion("Featured Models", open=False):
gr.HTML(
"""
<p><a href="https://huggingface.co/models?inference=warm&pipeline_tag=text-generation&sort=trending">See all available models</a></p>
<table style="width:100%; text-align:center; margin:auto;">
<tr>
<th>Model Name</th>
<th>Type</th>
<th>Notes</th>
</tr>
<tr>
<td>Llama-3.3-70B-Instruct</td>
<td>Instruction</td>
<td>High performance</td>
</tr>
<tr>
<td>Llama-2-70B-chat</td>
<td>Chat</td>
<td>Conversational</td>
</tr>
<tr>
<td>Flan-T5-XL</td>
<td>General</td>
<td>Versatile</td>
</tr>
</table>
"""
)
with gr.Accordion("Parameters Overview", open=False):
gr.Markdown(
"""
## Parameters Overview
### Max new tokens
This slider controls the maximum number of tokens to generate in the response.
### Temperature
Sampling temperature, which controls the randomness. A higher temperature makes the output more random.
### Top-P
Top-p (nucleus) sampling, which controls the diversity. The model considers the smallest number of tokens whose cumulative probability exceeds the top-p threshold.
### Frequency Penalty
Penalizes repeated tokens in the output, which helps to reduce repetition.
### Seed
A fixed seed for reproducibility. Set to -1 for random seed.
"""
)
print("Launching the demo application.")
demo.launch() |