File size: 7,655 Bytes
038f313
 
4c18bfc
038f313
880ced6
 
038f313
 
4c18bfc
038f313
 
 
 
 
 
 
 
 
69b4a5f
038f313
 
 
3a64d68
d735dab
f7c4208
7d3730f
038f313
5b1509d
f7c4208
 
 
 
 
 
 
 
 
 
 
a430d0d
d735dab
f7c4208
 
 
 
 
 
 
 
5b1509d
 
038f313
f7c4208
 
 
 
 
 
 
880ced6
f7c4208
 
038f313
f7c4208
 
 
 
 
 
 
 
 
 
038f313
 
f7c4208
038f313
f7c4208
 
 
5b1509d
f7c4208
038f313
f7c4208
038f313
 
21137c4
 
038f313
 
f7c4208
5b1509d
f7c4208
5b1509d
038f313
 
f7c4208
 
d735dab
4c18bfc
f7c4208
542c2ac
f7c4208
 
21137c4
f7c4208
 
21137c4
 
f7c4208
 
 
 
 
d735dab
f7c4208
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d3730f
f7c4208
 
 
 
 
7d3730f
 
f7c4208
7d3730f
f7c4208
21137c4
 
 
f7c4208
 
21137c4
 
f7c4208
 
 
21137c4
 
f7c4208
 
 
21137c4
 
f7c4208
 
 
21137c4
 
 
7d3730f
 
 
d735dab
f7c4208
 
 
21137c4
f7c4208
 
21137c4
f7c4208
 
21137c4
f7c4208
 
21137c4
f7c4208
 
21137c4
7d3730f
 
f7c4208
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import gradio as gr
from openai import OpenAI
import os

# Retrieve the access token from the environment variable
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")

# Initialize the OpenAI client with the Hugging Face Inference API endpoint
client = OpenAI(
    base_url="https://api-inference.huggingface.co/v1/",
    api_key=ACCESS_TOKEN,
)
print("OpenAI client initialized.")

def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
    frequency_penalty,
    seed,
    model,
    custom_model
):
    """
    This function handles the chatbot response. It takes in:
    - message: the user's new message
    - history: the list of previous messages, each as a tuple (user_msg, assistant_msg)
    - system_message: the system prompt
    - max_tokens: the maximum number of tokens to generate in the response
    - temperature: sampling temperature
    - top_p: top-p (nucleus) sampling
    - frequency_penalty: penalize repeated tokens in the output
    - seed: a fixed seed for reproducibility; -1 will mean 'random'
    - model: the selected model
    - custom_model: a custom model provided by the user
    """

    print(f"Received message: {message}")
    print(f"History: {history}")
    print(f"System message: {system_message}")
    print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
    print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
    print(f"Model: {model}, Custom Model: {custom_model}")

    # Convert seed to None if -1 (meaning random)
    if seed == -1:
        seed = None

    # Use custom model if provided, otherwise use selected model
    if custom_model.strip() != "":
        model_to_use = custom_model.strip()
    else:
        model_to_use = model

    # Construct the messages array required by the API
    messages = [{"role": "system", "content": system_message}]

    # Add conversation history to the context
    for val in history:
        user_part = val[0]
        assistant_part = val[1]
        if user_part:
            messages.append({"role": "user", "content": user_part})
            print(f"Added user message to context: {user_part}")
        if assistant_part:
            messages.append({"role": "assistant", "content": assistant_part})
            print(f"Added assistant message to context: {assistant_part}")

    # Append the latest user message
    messages.append({"role": "user", "content": message})

    # Start with an empty string to build the response as tokens stream in
    response = ""
    print("Sending request to OpenAI API.")

    # Make the streaming request to the HF Inference API via openai-like client
    for message_chunk in client.chat.completions.create(
        model=model_to_use,   # Use the selected or custom model
        max_tokens=max_tokens,
        stream=True,  # Stream the response
        temperature=temperature,
        top_p=top_p,
        frequency_penalty=frequency_penalty,
        seed=seed,
        messages=messages,
    ):
        # Extract the token text from the response chunk
        token_text = message_chunk.choices[0].delta.content
        print(f"Received token: {token_text}")
        response += token_text
        yield response

    print("Completed response generation.")

# Create a Chatbot component with a specified height
chatbot = gr.Chatbot(height=600)
print("Chatbot interface created.")

# List of placeholder models for demonstration
models_list = [
    "meta-llama/Llama-3.3-70B-Instruct",
    "meta-llama/Llama-2-70B-chat",
    "google/flan-t5-xl"
]

# Function to filter models based on search input
def filter_models(search_term):
    filtered_models = [m for m in models_list if search_term.lower() in m.lower()]
    return gr.update(choices=filtered_models)

# Create the Gradio ChatInterface
# Adding additional fields for model selection and parameters
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="", label="System message"),
        gr.Slider(minimum=1,   maximum=4096, value=512, step=1,   label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0,  value=0.7, step=0.1, label="Temperature"),
        gr.Slider(minimum=0.1, maximum=1.0,  value=0.95, step=0.05, label="Top-P"),
        gr.Slider(
            minimum=-2.0,
            maximum=2.0,
            value=0.0,
            step=0.1,
            label="Frequency Penalty"
        ),
        gr.Slider(
            minimum=-1,
            maximum=65535,  # Arbitrary upper limit for demonstration
            value=-1,
            step=1,
            label="Seed (-1 for random)"
        ),
        gr.Textbox(label="Custom Model", placeholder="Enter custom model path here"),
        gr.Accordion("Featured Models", open=True).update(
            gr.Column([
                gr.Textbox(label="Filter Models", placeholder="Search for a featured model...").change(
                    filter_models, inputs="__self__", outputs="model"
                ),
                gr.Radio(label="Select a model below", value="meta-llama/Llama-3.3-70B-Instruct", choices=models_list, interactive=True, elem_id="model-radio")
            ])
        )
    ],
    fill_height=True,
    chatbot=chatbot,
    theme="Nymbo/Nymbo_Theme",
)

# Adding an "Information" tab with accordions for "Featured Models" and "Parameters Overview"
with gr.Blocks(theme='Nymbo/Nymbo_Theme') as demo:
    with gr.Tab("Chat"):
        gr.Markdown("## Chat with the Model")
        chatbot.render()
    with gr.Tab("Information"):
        with gr.Accordion("Featured Models", open=False):
            gr.HTML(
                """
                <p><a href="https://huggingface.co/models?inference=warm&pipeline_tag=text-generation&sort=trending">See all available models</a></p>
                <table style="width:100%; text-align:center; margin:auto;">
                    <tr>
                        <th>Model Name</th>
                        <th>Type</th>
                        <th>Notes</th>
                    </tr>
                    <tr>
                        <td>Llama-3.3-70B-Instruct</td>
                        <td>Instruction</td>
                        <td>High performance</td>
                    </tr>
                    <tr>
                        <td>Llama-2-70B-chat</td>
                        <td>Chat</td>
                        <td>Conversational</td>
                    </tr>
                    <tr>
                        <td>Flan-T5-XL</td>
                        <td>General</td>
                        <td>Versatile</td>
                    </tr>
                </table>
                """
            )
        with gr.Accordion("Parameters Overview", open=False):
            gr.Markdown(
                """
                ## Parameters Overview
                ### Max new tokens
                This slider controls the maximum number of tokens to generate in the response.

                ### Temperature
                Sampling temperature, which controls the randomness. A higher temperature makes the output more random.

                ### Top-P
                Top-p (nucleus) sampling, which controls the diversity. The model considers the smallest number of tokens whose cumulative probability exceeds the top-p threshold.

                ### Frequency Penalty
                Penalizes repeated tokens in the output, which helps to reduce repetition.

                ### Seed
                A fixed seed for reproducibility. Set to -1 for random seed.
                """
            )

print("Launching the demo application.")
demo.launch()