Spaces:
Running
Running
adding custom models support, featured models tab, information tab, better model selection logic
Browse files
app.py
CHANGED
@@ -1,12 +1,12 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
from openai import OpenAI
|
3 |
-
import os
|
4 |
|
5 |
-
#
|
6 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
7 |
print("Access token loaded.")
|
8 |
|
9 |
-
# Initialize the OpenAI client
|
10 |
client = OpenAI(
|
11 |
base_url="https://api-inference.huggingface.co/v1/",
|
12 |
api_key=ACCESS_TOKEN,
|
@@ -21,34 +21,48 @@ def respond(
|
|
21 |
temperature,
|
22 |
top_p,
|
23 |
frequency_penalty,
|
24 |
-
seed
|
|
|
|
|
25 |
):
|
26 |
"""
|
27 |
-
|
28 |
-
- message: the user's new message
|
29 |
-
- history: the list of previous messages, each as a tuple (user_msg, assistant_msg)
|
30 |
-
- system_message: the system prompt
|
31 |
-
- max_tokens: the maximum number of tokens to generate in the response
|
32 |
-
- temperature: sampling temperature
|
33 |
-
- top_p: top-p (nucleus) sampling
|
34 |
-
- frequency_penalty: penalize repeated tokens in the output
|
35 |
-
- seed: a fixed seed for reproducibility; -1 will mean 'random'
|
36 |
-
"""
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
print(f"Received message: {message}")
|
39 |
print(f"History: {history}")
|
40 |
print(f"System message: {system_message}")
|
41 |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
|
42 |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
|
|
|
|
|
43 |
|
44 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
if seed == -1:
|
46 |
seed = None
|
47 |
|
48 |
-
#
|
49 |
messages = [{"role": "system", "content": system_message}]
|
50 |
-
|
51 |
-
# Add conversation history to the context
|
52 |
for val in history:
|
53 |
user_part = val[0]
|
54 |
assistant_part = val[1]
|
@@ -59,66 +73,301 @@ def respond(
|
|
59 |
messages.append({"role": "assistant", "content": assistant_part})
|
60 |
print(f"Added assistant message to context: {assistant_part}")
|
61 |
|
62 |
-
#
|
63 |
messages.append({"role": "user", "content": message})
|
64 |
|
65 |
-
#
|
66 |
response = ""
|
67 |
-
print("Sending request to OpenAI
|
68 |
-
|
69 |
-
# Make the streaming request to the HF Inference API via openai-like client
|
70 |
for message_chunk in client.chat.completions.create(
|
71 |
-
model=
|
72 |
max_tokens=max_tokens,
|
73 |
-
stream=True,
|
74 |
temperature=temperature,
|
75 |
top_p=top_p,
|
76 |
-
frequency_penalty=frequency_penalty,
|
77 |
-
seed=seed,
|
78 |
messages=messages,
|
79 |
):
|
80 |
-
# Extract the token text from the response chunk
|
81 |
token_text = message_chunk.choices[0].delta.content
|
82 |
print(f"Received token: {token_text}")
|
83 |
response += token_text
|
|
|
84 |
yield response
|
85 |
|
86 |
print("Completed response generation.")
|
87 |
|
88 |
-
# Create a Chatbot component with a specified height
|
89 |
-
chatbot = gr.Chatbot(height=600)
|
90 |
-
print("Chatbot interface created.")
|
91 |
-
|
92 |
-
# Create the Gradio ChatInterface
|
93 |
-
# We add two new sliders for Frequency Penalty and Seed
|
94 |
-
demo = gr.ChatInterface(
|
95 |
-
respond,
|
96 |
-
additional_inputs=[
|
97 |
-
gr.Textbox(value="", label="System message"),
|
98 |
-
gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens"),
|
99 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
100 |
-
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"),
|
101 |
-
gr.Slider(
|
102 |
-
minimum=-2.0,
|
103 |
-
maximum=2.0,
|
104 |
-
value=0.0,
|
105 |
-
step=0.1,
|
106 |
-
label="Frequency Penalty"
|
107 |
-
),
|
108 |
-
gr.Slider(
|
109 |
-
minimum=-1,
|
110 |
-
maximum=65535, # Arbitrary upper limit for demonstration
|
111 |
-
value=-1,
|
112 |
-
step=1,
|
113 |
-
label="Seed (-1 for random)"
|
114 |
-
),
|
115 |
-
],
|
116 |
-
fill_height=True,
|
117 |
-
chatbot=chatbot,
|
118 |
-
theme="Nymbo/Nymbo_Theme",
|
119 |
-
)
|
120 |
-
print("Gradio interface initialized.")
|
121 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
if __name__ == "__main__":
|
123 |
print("Launching the demo application.")
|
|
|
124 |
demo.launch()
|
|
|
1 |
+
import os
|
2 |
import gradio as gr
|
3 |
from openai import OpenAI
|
|
|
4 |
|
5 |
+
# Load your Hugging Face Inference API token from environment
|
6 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
7 |
print("Access token loaded.")
|
8 |
|
9 |
+
# Initialize the OpenAI-like client that points to the HF Inference endpoint
|
10 |
client = OpenAI(
|
11 |
base_url="https://api-inference.huggingface.co/v1/",
|
12 |
api_key=ACCESS_TOKEN,
|
|
|
21 |
temperature,
|
22 |
top_p,
|
23 |
frequency_penalty,
|
24 |
+
seed,
|
25 |
+
featured_model, # Selected from "Featured Models" radio
|
26 |
+
custom_model # Optional user-provided custom model path
|
27 |
):
|
28 |
"""
|
29 |
+
Respond to user messages using the Hugging Face Inference API with OpenAI-like syntax.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
Parameters:
|
32 |
+
- message (str): The latest user message
|
33 |
+
- history (list of tuples): The conversation history [(user_msg, assistant_msg), ...]
|
34 |
+
- system_message (str): System-level instruction or context
|
35 |
+
- max_tokens (int): Max tokens to generate
|
36 |
+
- temperature (float): Sampling temperature
|
37 |
+
- top_p (float): Nucleus sampling (top-p)
|
38 |
+
- frequency_penalty (float): Penalize repeated tokens
|
39 |
+
- seed (int): Fixed seed; if -1 => random
|
40 |
+
- featured_model (str): The featured model name selected in the UI
|
41 |
+
- custom_model (str): A custom model path (HF repo) provided by the user
|
42 |
+
"""
|
43 |
print(f"Received message: {message}")
|
44 |
print(f"History: {history}")
|
45 |
print(f"System message: {system_message}")
|
46 |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
|
47 |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
|
48 |
+
print(f"Featured Model (chosen): {featured_model}")
|
49 |
+
print(f"Custom Model (if any): {custom_model}")
|
50 |
|
51 |
+
# Decide which model to use. If the user typed a custom model, we use that.
|
52 |
+
# Otherwise, we use the featured model they picked from the radio.
|
53 |
+
if custom_model.strip():
|
54 |
+
model_to_use = custom_model.strip()
|
55 |
+
else:
|
56 |
+
model_to_use = featured_model
|
57 |
+
|
58 |
+
print(f"Final model to use: {model_to_use}")
|
59 |
+
|
60 |
+
# Convert seed to None if -1 => means random
|
61 |
if seed == -1:
|
62 |
seed = None
|
63 |
|
64 |
+
# Prepare the conversation
|
65 |
messages = [{"role": "system", "content": system_message}]
|
|
|
|
|
66 |
for val in history:
|
67 |
user_part = val[0]
|
68 |
assistant_part = val[1]
|
|
|
73 |
messages.append({"role": "assistant", "content": assistant_part})
|
74 |
print(f"Added assistant message to context: {assistant_part}")
|
75 |
|
76 |
+
# Add the latest user message
|
77 |
messages.append({"role": "user", "content": message})
|
78 |
|
79 |
+
# Generate the response in a streaming manner
|
80 |
response = ""
|
81 |
+
print("Sending request to HF Inference API via OpenAI-like client.")
|
|
|
|
|
82 |
for message_chunk in client.chat.completions.create(
|
83 |
+
model=model_to_use,
|
84 |
max_tokens=max_tokens,
|
85 |
+
stream=True,
|
86 |
temperature=temperature,
|
87 |
top_p=top_p,
|
88 |
+
frequency_penalty=frequency_penalty,
|
89 |
+
seed=seed,
|
90 |
messages=messages,
|
91 |
):
|
|
|
92 |
token_text = message_chunk.choices[0].delta.content
|
93 |
print(f"Received token: {token_text}")
|
94 |
response += token_text
|
95 |
+
# Yield partial responses to get streaming in Gradio
|
96 |
yield response
|
97 |
|
98 |
print("Completed response generation.")
|
99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
+
# ----------------------------
|
102 |
+
# DEFINE THE GRADIO INTERFACE
|
103 |
+
# ----------------------------
|
104 |
+
def build_demo():
|
105 |
+
"""
|
106 |
+
Build the entire Gradio Blocks interface, featuring:
|
107 |
+
- A Tab for the chatbot (with featured models, custom model)
|
108 |
+
- An Information tab with model table, parameter overview, etc.
|
109 |
+
"""
|
110 |
+
# Define your placeholder featured models
|
111 |
+
featured_models_list = [
|
112 |
+
"meta-llama/Llama-3.3-70B-Instruct",
|
113 |
+
"Qwen/Qwen2.5-7B-Instruct",
|
114 |
+
"google/gemma-2-2b-it",
|
115 |
+
"microsoft/Phi-3-mini-4k-instruct",
|
116 |
+
]
|
117 |
+
|
118 |
+
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
119 |
+
gr.Markdown("## Serverless Text Generation Hub")
|
120 |
+
|
121 |
+
with gr.Tabs():
|
122 |
+
# -------------------- CHAT TAB --------------------
|
123 |
+
with gr.Tab("Chat"):
|
124 |
+
with gr.Row():
|
125 |
+
with gr.Column():
|
126 |
+
# "Featured Models" Accordion
|
127 |
+
with gr.Accordion("Featured Models", open=False):
|
128 |
+
model_search = gr.Textbox(
|
129 |
+
label="Filter Featured Models",
|
130 |
+
placeholder="Search featured models...",
|
131 |
+
lines=1,
|
132 |
+
)
|
133 |
+
# Radio for selecting a featured model
|
134 |
+
featured_models = gr.Radio(
|
135 |
+
label="Pick a Featured Model",
|
136 |
+
choices=featured_models_list,
|
137 |
+
value=featured_models_list[0],
|
138 |
+
interactive=True,
|
139 |
+
)
|
140 |
+
|
141 |
+
# Function to filter the model list by search text
|
142 |
+
def filter_models(search_term):
|
143 |
+
filtered = [
|
144 |
+
m
|
145 |
+
for m in featured_models_list
|
146 |
+
if search_term.lower() in m.lower()
|
147 |
+
]
|
148 |
+
return gr.update(choices=filtered)
|
149 |
+
|
150 |
+
# Update the radio choices when user enters text in the search box
|
151 |
+
model_search.change(
|
152 |
+
filter_models,
|
153 |
+
inputs=model_search,
|
154 |
+
outputs=featured_models,
|
155 |
+
)
|
156 |
+
|
157 |
+
# "Custom Model" text box
|
158 |
+
custom_model = gr.Textbox(
|
159 |
+
label="Custom Model",
|
160 |
+
placeholder="Paste a Hugging Face repo path, e.g. 'myuser/my-model'",
|
161 |
+
lines=1,
|
162 |
+
)
|
163 |
+
gr.Markdown(
|
164 |
+
"If you provide a custom model path above, it will override your featured model selection."
|
165 |
+
)
|
166 |
+
|
167 |
+
with gr.Column():
|
168 |
+
# Create the Gradio Chatbot
|
169 |
+
chatbot = gr.Chatbot(height=600, label="Chat Output")
|
170 |
+
|
171 |
+
# Additional controls for system prompt & generation parameters
|
172 |
+
with gr.Box():
|
173 |
+
system_message = gr.Textbox(
|
174 |
+
value="",
|
175 |
+
label="System message",
|
176 |
+
placeholder="System-level instruction or context here...",
|
177 |
+
)
|
178 |
+
max_tokens = gr.Slider(
|
179 |
+
minimum=1,
|
180 |
+
maximum=4096,
|
181 |
+
value=512,
|
182 |
+
step=1,
|
183 |
+
label="Max new tokens",
|
184 |
+
)
|
185 |
+
temperature = gr.Slider(
|
186 |
+
minimum=0.1,
|
187 |
+
maximum=4.0,
|
188 |
+
value=0.7,
|
189 |
+
step=0.1,
|
190 |
+
label="Temperature",
|
191 |
+
)
|
192 |
+
top_p = gr.Slider(
|
193 |
+
minimum=0.1,
|
194 |
+
maximum=1.0,
|
195 |
+
value=0.95,
|
196 |
+
step=0.05,
|
197 |
+
label="Top-P",
|
198 |
+
)
|
199 |
+
frequency_penalty = gr.Slider(
|
200 |
+
minimum=-2.0,
|
201 |
+
maximum=2.0,
|
202 |
+
value=0.0,
|
203 |
+
step=0.1,
|
204 |
+
label="Frequency Penalty",
|
205 |
+
)
|
206 |
+
seed = gr.Slider(
|
207 |
+
minimum=-1,
|
208 |
+
maximum=65535,
|
209 |
+
value=-1,
|
210 |
+
step=1,
|
211 |
+
label="Seed (-1 for random)",
|
212 |
+
)
|
213 |
+
|
214 |
+
# We will attach a ChatInterface-like set of controls manually.
|
215 |
+
# Keep track of conversation state
|
216 |
+
state = gr.State([]) # Holds conversation as a list of (user, assistant)
|
217 |
+
|
218 |
+
# Define "user" event function
|
219 |
+
def user_message(user_text, history):
|
220 |
+
"""
|
221 |
+
When the user sends a message, add it to history as (user_text, "")
|
222 |
+
The assistant's response will fill the second part of the tuple later.
|
223 |
+
"""
|
224 |
+
if not user_text:
|
225 |
+
return gr.update(), history
|
226 |
+
new_history = history + [(user_text, "")] # user question, empty answer
|
227 |
+
return gr.update(value=""), new_history
|
228 |
+
|
229 |
+
# Define "bot" event function
|
230 |
+
def bot_message(history, system_message, max_tokens, temperature, top_p,
|
231 |
+
frequency_penalty, seed, featured_models, custom_model):
|
232 |
+
"""
|
233 |
+
Generate assistant reply given the entire chat history,
|
234 |
+
system prompt, and generation params. The function will stream
|
235 |
+
tokens from respond().
|
236 |
+
"""
|
237 |
+
user_text = history[-1][0] if history else ""
|
238 |
+
# We'll call respond() as a generator, so we can stream back tokens.
|
239 |
+
bot_stream = respond(
|
240 |
+
message=user_text,
|
241 |
+
history=history[:-1],
|
242 |
+
system_message=system_message,
|
243 |
+
max_tokens=max_tokens,
|
244 |
+
temperature=temperature,
|
245 |
+
top_p=top_p,
|
246 |
+
frequency_penalty=frequency_penalty,
|
247 |
+
seed=seed,
|
248 |
+
featured_model=featured_models,
|
249 |
+
custom_model=custom_model,
|
250 |
+
)
|
251 |
+
# We'll build up the assistant's reply token by token
|
252 |
+
final_assistant_text = ""
|
253 |
+
for token in bot_stream:
|
254 |
+
final_assistant_text = token
|
255 |
+
# We yield partial updates to the chatbot
|
256 |
+
yield history[:-1] + [(user_text, final_assistant_text)]
|
257 |
+
# Once complete, update the conversation in state
|
258 |
+
history[-1] = (user_text, final_assistant_text)
|
259 |
+
yield history
|
260 |
+
|
261 |
+
# Textbox for the user to type a message
|
262 |
+
with gr.Row():
|
263 |
+
with gr.Column(scale=8):
|
264 |
+
user_textbox = gr.Textbox(
|
265 |
+
label="Your message",
|
266 |
+
placeholder="Type your question or prompt here...",
|
267 |
+
lines=2,
|
268 |
+
interactive=True,
|
269 |
+
)
|
270 |
+
with gr.Column(scale=2):
|
271 |
+
send_button = gr.Button(
|
272 |
+
value="Send",
|
273 |
+
variant="primary"
|
274 |
+
)
|
275 |
+
|
276 |
+
# When user clicks "Send", first call user_message(), then bot_message()
|
277 |
+
send_button.click(
|
278 |
+
fn=user_message,
|
279 |
+
inputs=[user_textbox, state],
|
280 |
+
outputs=[user_textbox, state],
|
281 |
+
).then(
|
282 |
+
fn=bot_message,
|
283 |
+
inputs=[
|
284 |
+
state,
|
285 |
+
system_message,
|
286 |
+
max_tokens,
|
287 |
+
temperature,
|
288 |
+
top_p,
|
289 |
+
frequency_penalty,
|
290 |
+
seed,
|
291 |
+
featured_models,
|
292 |
+
custom_model,
|
293 |
+
],
|
294 |
+
outputs=chatbot,
|
295 |
+
)
|
296 |
+
|
297 |
+
# -------------------- INFORMATION TAB --------------------
|
298 |
+
with gr.Tab("Information"):
|
299 |
+
# Put information about featured models
|
300 |
+
with gr.Accordion("Featured Models", open=False):
|
301 |
+
gr.HTML(
|
302 |
+
"""
|
303 |
+
<table style="width:100%; text-align:center; margin:auto;">
|
304 |
+
<tr>
|
305 |
+
<th>Model Name</th>
|
306 |
+
<th>Description</th>
|
307 |
+
<th>Status</th>
|
308 |
+
</tr>
|
309 |
+
<tr>
|
310 |
+
<td>meta-llama/Llama-3.3-70B-Instruct</td>
|
311 |
+
<td>Powerful large model by Llama, fine-tuned to follow instructions.</td>
|
312 |
+
<td>✅</td>
|
313 |
+
</tr>
|
314 |
+
<tr>
|
315 |
+
<td>Qwen/Qwen2.5-7B-Instruct</td>
|
316 |
+
<td>Instruction-tuned LLM with good accuracy and speed.</td>
|
317 |
+
<td>✅</td>
|
318 |
+
</tr>
|
319 |
+
<tr>
|
320 |
+
<td>google/gemma-2-2b-it</td>
|
321 |
+
<td>Compact 2B parameter model for quick text generation tasks.</td>
|
322 |
+
<td>✅</td>
|
323 |
+
</tr>
|
324 |
+
<tr>
|
325 |
+
<td>microsoft/Phi-3-mini-4k-instruct</td>
|
326 |
+
<td>Small but effective model, optimized for instruction-based tasks.</td>
|
327 |
+
<td>✅</td>
|
328 |
+
</tr>
|
329 |
+
</table>
|
330 |
+
"""
|
331 |
+
)
|
332 |
+
|
333 |
+
# Put general parameter info
|
334 |
+
with gr.Accordion("Parameters Overview", open=False):
|
335 |
+
gr.Markdown(
|
336 |
+
"""
|
337 |
+
## Parameters Overview
|
338 |
+
- **System Message**
|
339 |
+
This is a special prompt that sets the behavior or context for the AI.
|
340 |
+
|
341 |
+
- **Max New Tokens**
|
342 |
+
The maximum length of the AI's reply in tokens.
|
343 |
+
|
344 |
+
- **Temperature**
|
345 |
+
Controls how random or "creative" the model is. A higher value yields more unexpected outputs.
|
346 |
+
|
347 |
+
- **Top-P**
|
348 |
+
Nucleus sampling — only the tokens whose probabilities add up to `top_p` or higher are kept for generation.
|
349 |
+
|
350 |
+
- **Frequency Penalty**
|
351 |
+
Discourages the model from repeating tokens that already appeared.
|
352 |
+
|
353 |
+
- **Seed**
|
354 |
+
For reproducible outputs. If set to `-1`, a random seed is chosen each time.
|
355 |
+
|
356 |
+
### Model Selection
|
357 |
+
- **Featured Models**
|
358 |
+
A curated set of recommended or widely-used LLMs you can pick from.
|
359 |
+
- **Custom Model**
|
360 |
+
If you have a specific Hugging Face repo (e.g. `some-user/my-cool-model`), paste it here to override.
|
361 |
+
|
362 |
+
***
|
363 |
+
Feel free to experiment with different settings to see how they affect the response!
|
364 |
+
"""
|
365 |
+
)
|
366 |
+
|
367 |
+
return demo
|
368 |
+
|
369 |
+
# Actually build and launch the app
|
370 |
if __name__ == "__main__":
|
371 |
print("Launching the demo application.")
|
372 |
+
demo = build_demo()
|
373 |
demo.launch()
|