Spaces:
Running
Running
adding custom models support, featured models tab, information tab, better model selection logic
Browse files
app.py
CHANGED
|
@@ -1,12 +1,12 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from openai import OpenAI
|
| 3 |
-
import os
|
| 4 |
|
| 5 |
-
#
|
| 6 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
| 7 |
print("Access token loaded.")
|
| 8 |
|
| 9 |
-
# Initialize the OpenAI client
|
| 10 |
client = OpenAI(
|
| 11 |
base_url="https://api-inference.huggingface.co/v1/",
|
| 12 |
api_key=ACCESS_TOKEN,
|
|
@@ -21,34 +21,48 @@ def respond(
|
|
| 21 |
temperature,
|
| 22 |
top_p,
|
| 23 |
frequency_penalty,
|
| 24 |
-
seed
|
|
|
|
|
|
|
| 25 |
):
|
| 26 |
"""
|
| 27 |
-
|
| 28 |
-
- message: the user's new message
|
| 29 |
-
- history: the list of previous messages, each as a tuple (user_msg, assistant_msg)
|
| 30 |
-
- system_message: the system prompt
|
| 31 |
-
- max_tokens: the maximum number of tokens to generate in the response
|
| 32 |
-
- temperature: sampling temperature
|
| 33 |
-
- top_p: top-p (nucleus) sampling
|
| 34 |
-
- frequency_penalty: penalize repeated tokens in the output
|
| 35 |
-
- seed: a fixed seed for reproducibility; -1 will mean 'random'
|
| 36 |
-
"""
|
| 37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
print(f"Received message: {message}")
|
| 39 |
print(f"History: {history}")
|
| 40 |
print(f"System message: {system_message}")
|
| 41 |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
|
| 42 |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
|
|
|
|
|
|
|
| 43 |
|
| 44 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
if seed == -1:
|
| 46 |
seed = None
|
| 47 |
|
| 48 |
-
#
|
| 49 |
messages = [{"role": "system", "content": system_message}]
|
| 50 |
-
|
| 51 |
-
# Add conversation history to the context
|
| 52 |
for val in history:
|
| 53 |
user_part = val[0]
|
| 54 |
assistant_part = val[1]
|
|
@@ -59,66 +73,301 @@ def respond(
|
|
| 59 |
messages.append({"role": "assistant", "content": assistant_part})
|
| 60 |
print(f"Added assistant message to context: {assistant_part}")
|
| 61 |
|
| 62 |
-
#
|
| 63 |
messages.append({"role": "user", "content": message})
|
| 64 |
|
| 65 |
-
#
|
| 66 |
response = ""
|
| 67 |
-
print("Sending request to OpenAI
|
| 68 |
-
|
| 69 |
-
# Make the streaming request to the HF Inference API via openai-like client
|
| 70 |
for message_chunk in client.chat.completions.create(
|
| 71 |
-
model=
|
| 72 |
max_tokens=max_tokens,
|
| 73 |
-
stream=True,
|
| 74 |
temperature=temperature,
|
| 75 |
top_p=top_p,
|
| 76 |
-
frequency_penalty=frequency_penalty,
|
| 77 |
-
seed=seed,
|
| 78 |
messages=messages,
|
| 79 |
):
|
| 80 |
-
# Extract the token text from the response chunk
|
| 81 |
token_text = message_chunk.choices[0].delta.content
|
| 82 |
print(f"Received token: {token_text}")
|
| 83 |
response += token_text
|
|
|
|
| 84 |
yield response
|
| 85 |
|
| 86 |
print("Completed response generation.")
|
| 87 |
|
| 88 |
-
# Create a Chatbot component with a specified height
|
| 89 |
-
chatbot = gr.Chatbot(height=600)
|
| 90 |
-
print("Chatbot interface created.")
|
| 91 |
-
|
| 92 |
-
# Create the Gradio ChatInterface
|
| 93 |
-
# We add two new sliders for Frequency Penalty and Seed
|
| 94 |
-
demo = gr.ChatInterface(
|
| 95 |
-
respond,
|
| 96 |
-
additional_inputs=[
|
| 97 |
-
gr.Textbox(value="", label="System message"),
|
| 98 |
-
gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens"),
|
| 99 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 100 |
-
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"),
|
| 101 |
-
gr.Slider(
|
| 102 |
-
minimum=-2.0,
|
| 103 |
-
maximum=2.0,
|
| 104 |
-
value=0.0,
|
| 105 |
-
step=0.1,
|
| 106 |
-
label="Frequency Penalty"
|
| 107 |
-
),
|
| 108 |
-
gr.Slider(
|
| 109 |
-
minimum=-1,
|
| 110 |
-
maximum=65535, # Arbitrary upper limit for demonstration
|
| 111 |
-
value=-1,
|
| 112 |
-
step=1,
|
| 113 |
-
label="Seed (-1 for random)"
|
| 114 |
-
),
|
| 115 |
-
],
|
| 116 |
-
fill_height=True,
|
| 117 |
-
chatbot=chatbot,
|
| 118 |
-
theme="Nymbo/Nymbo_Theme",
|
| 119 |
-
)
|
| 120 |
-
print("Gradio interface initialized.")
|
| 121 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
if __name__ == "__main__":
|
| 123 |
print("Launching the demo application.")
|
|
|
|
| 124 |
demo.launch()
|
|
|
|
| 1 |
+
import os
|
| 2 |
import gradio as gr
|
| 3 |
from openai import OpenAI
|
|
|
|
| 4 |
|
| 5 |
+
# Load your Hugging Face Inference API token from environment
|
| 6 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
| 7 |
print("Access token loaded.")
|
| 8 |
|
| 9 |
+
# Initialize the OpenAI-like client that points to the HF Inference endpoint
|
| 10 |
client = OpenAI(
|
| 11 |
base_url="https://api-inference.huggingface.co/v1/",
|
| 12 |
api_key=ACCESS_TOKEN,
|
|
|
|
| 21 |
temperature,
|
| 22 |
top_p,
|
| 23 |
frequency_penalty,
|
| 24 |
+
seed,
|
| 25 |
+
featured_model, # Selected from "Featured Models" radio
|
| 26 |
+
custom_model # Optional user-provided custom model path
|
| 27 |
):
|
| 28 |
"""
|
| 29 |
+
Respond to user messages using the Hugging Face Inference API with OpenAI-like syntax.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
+
Parameters:
|
| 32 |
+
- message (str): The latest user message
|
| 33 |
+
- history (list of tuples): The conversation history [(user_msg, assistant_msg), ...]
|
| 34 |
+
- system_message (str): System-level instruction or context
|
| 35 |
+
- max_tokens (int): Max tokens to generate
|
| 36 |
+
- temperature (float): Sampling temperature
|
| 37 |
+
- top_p (float): Nucleus sampling (top-p)
|
| 38 |
+
- frequency_penalty (float): Penalize repeated tokens
|
| 39 |
+
- seed (int): Fixed seed; if -1 => random
|
| 40 |
+
- featured_model (str): The featured model name selected in the UI
|
| 41 |
+
- custom_model (str): A custom model path (HF repo) provided by the user
|
| 42 |
+
"""
|
| 43 |
print(f"Received message: {message}")
|
| 44 |
print(f"History: {history}")
|
| 45 |
print(f"System message: {system_message}")
|
| 46 |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
|
| 47 |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
|
| 48 |
+
print(f"Featured Model (chosen): {featured_model}")
|
| 49 |
+
print(f"Custom Model (if any): {custom_model}")
|
| 50 |
|
| 51 |
+
# Decide which model to use. If the user typed a custom model, we use that.
|
| 52 |
+
# Otherwise, we use the featured model they picked from the radio.
|
| 53 |
+
if custom_model.strip():
|
| 54 |
+
model_to_use = custom_model.strip()
|
| 55 |
+
else:
|
| 56 |
+
model_to_use = featured_model
|
| 57 |
+
|
| 58 |
+
print(f"Final model to use: {model_to_use}")
|
| 59 |
+
|
| 60 |
+
# Convert seed to None if -1 => means random
|
| 61 |
if seed == -1:
|
| 62 |
seed = None
|
| 63 |
|
| 64 |
+
# Prepare the conversation
|
| 65 |
messages = [{"role": "system", "content": system_message}]
|
|
|
|
|
|
|
| 66 |
for val in history:
|
| 67 |
user_part = val[0]
|
| 68 |
assistant_part = val[1]
|
|
|
|
| 73 |
messages.append({"role": "assistant", "content": assistant_part})
|
| 74 |
print(f"Added assistant message to context: {assistant_part}")
|
| 75 |
|
| 76 |
+
# Add the latest user message
|
| 77 |
messages.append({"role": "user", "content": message})
|
| 78 |
|
| 79 |
+
# Generate the response in a streaming manner
|
| 80 |
response = ""
|
| 81 |
+
print("Sending request to HF Inference API via OpenAI-like client.")
|
|
|
|
|
|
|
| 82 |
for message_chunk in client.chat.completions.create(
|
| 83 |
+
model=model_to_use,
|
| 84 |
max_tokens=max_tokens,
|
| 85 |
+
stream=True,
|
| 86 |
temperature=temperature,
|
| 87 |
top_p=top_p,
|
| 88 |
+
frequency_penalty=frequency_penalty,
|
| 89 |
+
seed=seed,
|
| 90 |
messages=messages,
|
| 91 |
):
|
|
|
|
| 92 |
token_text = message_chunk.choices[0].delta.content
|
| 93 |
print(f"Received token: {token_text}")
|
| 94 |
response += token_text
|
| 95 |
+
# Yield partial responses to get streaming in Gradio
|
| 96 |
yield response
|
| 97 |
|
| 98 |
print("Completed response generation.")
|
| 99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
|
| 101 |
+
# ----------------------------
|
| 102 |
+
# DEFINE THE GRADIO INTERFACE
|
| 103 |
+
# ----------------------------
|
| 104 |
+
def build_demo():
|
| 105 |
+
"""
|
| 106 |
+
Build the entire Gradio Blocks interface, featuring:
|
| 107 |
+
- A Tab for the chatbot (with featured models, custom model)
|
| 108 |
+
- An Information tab with model table, parameter overview, etc.
|
| 109 |
+
"""
|
| 110 |
+
# Define your placeholder featured models
|
| 111 |
+
featured_models_list = [
|
| 112 |
+
"meta-llama/Llama-3.3-70B-Instruct",
|
| 113 |
+
"Qwen/Qwen2.5-7B-Instruct",
|
| 114 |
+
"google/gemma-2-2b-it",
|
| 115 |
+
"microsoft/Phi-3-mini-4k-instruct",
|
| 116 |
+
]
|
| 117 |
+
|
| 118 |
+
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
| 119 |
+
gr.Markdown("## Serverless Text Generation Hub")
|
| 120 |
+
|
| 121 |
+
with gr.Tabs():
|
| 122 |
+
# -------------------- CHAT TAB --------------------
|
| 123 |
+
with gr.Tab("Chat"):
|
| 124 |
+
with gr.Row():
|
| 125 |
+
with gr.Column():
|
| 126 |
+
# "Featured Models" Accordion
|
| 127 |
+
with gr.Accordion("Featured Models", open=False):
|
| 128 |
+
model_search = gr.Textbox(
|
| 129 |
+
label="Filter Featured Models",
|
| 130 |
+
placeholder="Search featured models...",
|
| 131 |
+
lines=1,
|
| 132 |
+
)
|
| 133 |
+
# Radio for selecting a featured model
|
| 134 |
+
featured_models = gr.Radio(
|
| 135 |
+
label="Pick a Featured Model",
|
| 136 |
+
choices=featured_models_list,
|
| 137 |
+
value=featured_models_list[0],
|
| 138 |
+
interactive=True,
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
# Function to filter the model list by search text
|
| 142 |
+
def filter_models(search_term):
|
| 143 |
+
filtered = [
|
| 144 |
+
m
|
| 145 |
+
for m in featured_models_list
|
| 146 |
+
if search_term.lower() in m.lower()
|
| 147 |
+
]
|
| 148 |
+
return gr.update(choices=filtered)
|
| 149 |
+
|
| 150 |
+
# Update the radio choices when user enters text in the search box
|
| 151 |
+
model_search.change(
|
| 152 |
+
filter_models,
|
| 153 |
+
inputs=model_search,
|
| 154 |
+
outputs=featured_models,
|
| 155 |
+
)
|
| 156 |
+
|
| 157 |
+
# "Custom Model" text box
|
| 158 |
+
custom_model = gr.Textbox(
|
| 159 |
+
label="Custom Model",
|
| 160 |
+
placeholder="Paste a Hugging Face repo path, e.g. 'myuser/my-model'",
|
| 161 |
+
lines=1,
|
| 162 |
+
)
|
| 163 |
+
gr.Markdown(
|
| 164 |
+
"If you provide a custom model path above, it will override your featured model selection."
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
with gr.Column():
|
| 168 |
+
# Create the Gradio Chatbot
|
| 169 |
+
chatbot = gr.Chatbot(height=600, label="Chat Output")
|
| 170 |
+
|
| 171 |
+
# Additional controls for system prompt & generation parameters
|
| 172 |
+
with gr.Box():
|
| 173 |
+
system_message = gr.Textbox(
|
| 174 |
+
value="",
|
| 175 |
+
label="System message",
|
| 176 |
+
placeholder="System-level instruction or context here...",
|
| 177 |
+
)
|
| 178 |
+
max_tokens = gr.Slider(
|
| 179 |
+
minimum=1,
|
| 180 |
+
maximum=4096,
|
| 181 |
+
value=512,
|
| 182 |
+
step=1,
|
| 183 |
+
label="Max new tokens",
|
| 184 |
+
)
|
| 185 |
+
temperature = gr.Slider(
|
| 186 |
+
minimum=0.1,
|
| 187 |
+
maximum=4.0,
|
| 188 |
+
value=0.7,
|
| 189 |
+
step=0.1,
|
| 190 |
+
label="Temperature",
|
| 191 |
+
)
|
| 192 |
+
top_p = gr.Slider(
|
| 193 |
+
minimum=0.1,
|
| 194 |
+
maximum=1.0,
|
| 195 |
+
value=0.95,
|
| 196 |
+
step=0.05,
|
| 197 |
+
label="Top-P",
|
| 198 |
+
)
|
| 199 |
+
frequency_penalty = gr.Slider(
|
| 200 |
+
minimum=-2.0,
|
| 201 |
+
maximum=2.0,
|
| 202 |
+
value=0.0,
|
| 203 |
+
step=0.1,
|
| 204 |
+
label="Frequency Penalty",
|
| 205 |
+
)
|
| 206 |
+
seed = gr.Slider(
|
| 207 |
+
minimum=-1,
|
| 208 |
+
maximum=65535,
|
| 209 |
+
value=-1,
|
| 210 |
+
step=1,
|
| 211 |
+
label="Seed (-1 for random)",
|
| 212 |
+
)
|
| 213 |
+
|
| 214 |
+
# We will attach a ChatInterface-like set of controls manually.
|
| 215 |
+
# Keep track of conversation state
|
| 216 |
+
state = gr.State([]) # Holds conversation as a list of (user, assistant)
|
| 217 |
+
|
| 218 |
+
# Define "user" event function
|
| 219 |
+
def user_message(user_text, history):
|
| 220 |
+
"""
|
| 221 |
+
When the user sends a message, add it to history as (user_text, "")
|
| 222 |
+
The assistant's response will fill the second part of the tuple later.
|
| 223 |
+
"""
|
| 224 |
+
if not user_text:
|
| 225 |
+
return gr.update(), history
|
| 226 |
+
new_history = history + [(user_text, "")] # user question, empty answer
|
| 227 |
+
return gr.update(value=""), new_history
|
| 228 |
+
|
| 229 |
+
# Define "bot" event function
|
| 230 |
+
def bot_message(history, system_message, max_tokens, temperature, top_p,
|
| 231 |
+
frequency_penalty, seed, featured_models, custom_model):
|
| 232 |
+
"""
|
| 233 |
+
Generate assistant reply given the entire chat history,
|
| 234 |
+
system prompt, and generation params. The function will stream
|
| 235 |
+
tokens from respond().
|
| 236 |
+
"""
|
| 237 |
+
user_text = history[-1][0] if history else ""
|
| 238 |
+
# We'll call respond() as a generator, so we can stream back tokens.
|
| 239 |
+
bot_stream = respond(
|
| 240 |
+
message=user_text,
|
| 241 |
+
history=history[:-1],
|
| 242 |
+
system_message=system_message,
|
| 243 |
+
max_tokens=max_tokens,
|
| 244 |
+
temperature=temperature,
|
| 245 |
+
top_p=top_p,
|
| 246 |
+
frequency_penalty=frequency_penalty,
|
| 247 |
+
seed=seed,
|
| 248 |
+
featured_model=featured_models,
|
| 249 |
+
custom_model=custom_model,
|
| 250 |
+
)
|
| 251 |
+
# We'll build up the assistant's reply token by token
|
| 252 |
+
final_assistant_text = ""
|
| 253 |
+
for token in bot_stream:
|
| 254 |
+
final_assistant_text = token
|
| 255 |
+
# We yield partial updates to the chatbot
|
| 256 |
+
yield history[:-1] + [(user_text, final_assistant_text)]
|
| 257 |
+
# Once complete, update the conversation in state
|
| 258 |
+
history[-1] = (user_text, final_assistant_text)
|
| 259 |
+
yield history
|
| 260 |
+
|
| 261 |
+
# Textbox for the user to type a message
|
| 262 |
+
with gr.Row():
|
| 263 |
+
with gr.Column(scale=8):
|
| 264 |
+
user_textbox = gr.Textbox(
|
| 265 |
+
label="Your message",
|
| 266 |
+
placeholder="Type your question or prompt here...",
|
| 267 |
+
lines=2,
|
| 268 |
+
interactive=True,
|
| 269 |
+
)
|
| 270 |
+
with gr.Column(scale=2):
|
| 271 |
+
send_button = gr.Button(
|
| 272 |
+
value="Send",
|
| 273 |
+
variant="primary"
|
| 274 |
+
)
|
| 275 |
+
|
| 276 |
+
# When user clicks "Send", first call user_message(), then bot_message()
|
| 277 |
+
send_button.click(
|
| 278 |
+
fn=user_message,
|
| 279 |
+
inputs=[user_textbox, state],
|
| 280 |
+
outputs=[user_textbox, state],
|
| 281 |
+
).then(
|
| 282 |
+
fn=bot_message,
|
| 283 |
+
inputs=[
|
| 284 |
+
state,
|
| 285 |
+
system_message,
|
| 286 |
+
max_tokens,
|
| 287 |
+
temperature,
|
| 288 |
+
top_p,
|
| 289 |
+
frequency_penalty,
|
| 290 |
+
seed,
|
| 291 |
+
featured_models,
|
| 292 |
+
custom_model,
|
| 293 |
+
],
|
| 294 |
+
outputs=chatbot,
|
| 295 |
+
)
|
| 296 |
+
|
| 297 |
+
# -------------------- INFORMATION TAB --------------------
|
| 298 |
+
with gr.Tab("Information"):
|
| 299 |
+
# Put information about featured models
|
| 300 |
+
with gr.Accordion("Featured Models", open=False):
|
| 301 |
+
gr.HTML(
|
| 302 |
+
"""
|
| 303 |
+
<table style="width:100%; text-align:center; margin:auto;">
|
| 304 |
+
<tr>
|
| 305 |
+
<th>Model Name</th>
|
| 306 |
+
<th>Description</th>
|
| 307 |
+
<th>Status</th>
|
| 308 |
+
</tr>
|
| 309 |
+
<tr>
|
| 310 |
+
<td>meta-llama/Llama-3.3-70B-Instruct</td>
|
| 311 |
+
<td>Powerful large model by Llama, fine-tuned to follow instructions.</td>
|
| 312 |
+
<td>✅</td>
|
| 313 |
+
</tr>
|
| 314 |
+
<tr>
|
| 315 |
+
<td>Qwen/Qwen2.5-7B-Instruct</td>
|
| 316 |
+
<td>Instruction-tuned LLM with good accuracy and speed.</td>
|
| 317 |
+
<td>✅</td>
|
| 318 |
+
</tr>
|
| 319 |
+
<tr>
|
| 320 |
+
<td>google/gemma-2-2b-it</td>
|
| 321 |
+
<td>Compact 2B parameter model for quick text generation tasks.</td>
|
| 322 |
+
<td>✅</td>
|
| 323 |
+
</tr>
|
| 324 |
+
<tr>
|
| 325 |
+
<td>microsoft/Phi-3-mini-4k-instruct</td>
|
| 326 |
+
<td>Small but effective model, optimized for instruction-based tasks.</td>
|
| 327 |
+
<td>✅</td>
|
| 328 |
+
</tr>
|
| 329 |
+
</table>
|
| 330 |
+
"""
|
| 331 |
+
)
|
| 332 |
+
|
| 333 |
+
# Put general parameter info
|
| 334 |
+
with gr.Accordion("Parameters Overview", open=False):
|
| 335 |
+
gr.Markdown(
|
| 336 |
+
"""
|
| 337 |
+
## Parameters Overview
|
| 338 |
+
- **System Message**
|
| 339 |
+
This is a special prompt that sets the behavior or context for the AI.
|
| 340 |
+
|
| 341 |
+
- **Max New Tokens**
|
| 342 |
+
The maximum length of the AI's reply in tokens.
|
| 343 |
+
|
| 344 |
+
- **Temperature**
|
| 345 |
+
Controls how random or "creative" the model is. A higher value yields more unexpected outputs.
|
| 346 |
+
|
| 347 |
+
- **Top-P**
|
| 348 |
+
Nucleus sampling — only the tokens whose probabilities add up to `top_p` or higher are kept for generation.
|
| 349 |
+
|
| 350 |
+
- **Frequency Penalty**
|
| 351 |
+
Discourages the model from repeating tokens that already appeared.
|
| 352 |
+
|
| 353 |
+
- **Seed**
|
| 354 |
+
For reproducible outputs. If set to `-1`, a random seed is chosen each time.
|
| 355 |
+
|
| 356 |
+
### Model Selection
|
| 357 |
+
- **Featured Models**
|
| 358 |
+
A curated set of recommended or widely-used LLMs you can pick from.
|
| 359 |
+
- **Custom Model**
|
| 360 |
+
If you have a specific Hugging Face repo (e.g. `some-user/my-cool-model`), paste it here to override.
|
| 361 |
+
|
| 362 |
+
***
|
| 363 |
+
Feel free to experiment with different settings to see how they affect the response!
|
| 364 |
+
"""
|
| 365 |
+
)
|
| 366 |
+
|
| 367 |
+
return demo
|
| 368 |
+
|
| 369 |
+
# Actually build and launch the app
|
| 370 |
if __name__ == "__main__":
|
| 371 |
print("Launching the demo application.")
|
| 372 |
+
demo = build_demo()
|
| 373 |
demo.launch()
|