File size: 11,557 Bytes
038f313
 
4c18bfc
038f313
880ced6
 
e13eb1b
038f313
e13eb1b
038f313
 
 
 
e13eb1b
038f313
 
 
e13eb1b
69b4a5f
038f313
 
 
3a64d68
e13eb1b
b56d11c
038f313
e13eb1b
 
 
 
 
 
 
 
86297f5
e13eb1b
b56d11c
e13eb1b
 
f7c4208
 
86297f5
 
f7c4208
b56d11c
f7c4208
e13eb1b
5b1509d
 
038f313
e13eb1b
880ced6
f7c4208
 
e13eb1b
 
 
 
 
 
86297f5
e13eb1b
 
 
 
038f313
 
e13eb1b
038f313
b56d11c
f7c4208
86297f5
e13eb1b
b56d11c
038f313
e13eb1b
038f313
 
b56d11c
 
86297f5
038f313
f7c4208
86297f5
b56d11c
 
 
542c2ac
e13eb1b
f7c4208
e13eb1b
 
 
 
86297f5
b56d11c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e13eb1b
b56d11c
 
 
 
 
 
 
 
 
 
 
 
 
 
86297f5
b56d11c
86297f5
b56d11c
 
 
 
 
 
86297f5
 
b56d11c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e13eb1b
86297f5
b56d11c
e4bb2d0
86297f5
b56d11c
 
 
86297f5
b56d11c
 
86297f5
b56d11c
 
86297f5
b56d11c
 
86297f5
b56d11c
 
86297f5
b56d11c
 
86297f5
b56d11c
 
e4bb2d0
e13eb1b
b56d11c
 
 
 
 
 
 
 
 
e13eb1b
b56d11c
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import gradio as gr
from openai import OpenAI
import os

# Retrieve the access token from the environment variable
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")

# Initialize the OpenAI client with the Hugging Face Inference API endpoint
client = OpenAI(
    base_url="https://api-inference.huggingface.co/v1/",
    api_key=ACCESS_TOKEN,
)
print("OpenAI client initialized.")

def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
    frequency_penalty,
    seed,
    model
):
    """
    This function handles the chatbot response. It takes in:
    - message: the user's new message
    - history: the list of previous messages, each as a tuple (user_msg, assistant_msg)
    - system_message: the system prompt
    - max_tokens: the maximum number of tokens to generate in the response
    - temperature: sampling temperature
    - top_p: top-p (nucleus) sampling
    - frequency_penalty: penalize repeated tokens in the output
    - seed: a fixed seed for reproducibility; -1 will mean 'random'
    - model: the selected model for text generation
    """

    print(f"Received message: {message}")
    print(f"History: {history}")
    print(f"System message: {system_message}")
    print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
    print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
    print(f"Model: {model}")

    # Convert seed to None if -1 (meaning random)
    if seed == -1:
        seed = None

    # Construct the messages array required by the API
    messages = [{"role": "system", "content": system_message}]

    # Add conversation history to the context
    for val in history:
        user_part = val[0]
        assistant_part = val[1]
        if user_part:
            messages.append({"role": "user", "content": user_part})
            print(f"Added user message to context: {user_part}")
        if assistant_part:
            messages.append({"role": "assistant", "content": assistant_part})
            print(f"Added assistant message to context: {assistant_part}")

    # Append the latest user message
    messages.append({"role": "user", "content": message})

    # Start with an empty string to build the response as tokens stream in
    response = ""
    print("Sending request to OpenAI API.")

    # Make the streaming request to the HF Inference API via openai-like client
    for message_chunk in client.chat.completions.create(
        model=model,   # Use the selected model
        max_tokens=max_tokens,
        stream=True,  # Stream the response
        temperature=temperature,
        top_p=top_p,
        frequency_penalty=frequency_penalty,  # <-- NEW
        seed=seed,                             # <-- NEW
        messages=messages,
    ):
        # Extract the token text from the response chunk
        token_text = message_chunk.choices[0].delta.content
        print(f"Received token: {token_text}")
        response += token_text
        yield response

    print("Completed response generation.")

# Create a Chatbot component with a specified height
chatbot = gr.Chatbot(height=600)
print("Chatbot interface created.")

# Create the Gradio ChatInterface
# We add two new sliders for Frequency Penalty and Seed
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="", label="System message"),
        gr.Slider(minimum=1,   maximum=4096, value=512, step=1,   label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0,  value=0.7, step=0.1, label="Temperature"),
        gr.Slider(minimum=0.1, maximum=1.0,  value=0.95, step=0.05, label="Top-P"),
        gr.Slider(
            minimum=-2.0,
            maximum=2.0,
            value=0.0,
            step=0.1,
            label="Frequency Penalty"
        ),
        gr.Slider(
            minimum=-1,
            maximum=65535,  # Arbitrary upper limit for demonstration
            value=-1,
            step=1,
            label="Seed (-1 for random)"
        ),
        gr.Textbox(label="Custom Model", info="Model Hugging Face path (optional)", placeholder="meta-llama/Llama-3.3-70B-Instruct"),
    ],
    fill_height=True,
    chatbot=chatbot,
    theme="Nymbo/Nymbo_Theme",
)
print("Gradio interface initialized.")

# Custom CSS to hide the footer in the interface
css = """
* {}
footer {visibility: hidden !important;}
"""

print("Initializing Gradio interface...")  # Debug log

# Define the Gradio interface
with gr.Blocks(theme='Nymbo/Nymbo_Theme_5') as textgen:
    # Tab for basic settings
    with gr.Tab("Basic Settings"):
        with gr.Row():
            with gr.Column(elem_id="prompt-container"):
                with gr.Row():
                    # Textbox for user to input the prompt
                    text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=3, elem_id="prompt-text-input")
                with gr.Row():
                    # Textbox for custom model input
                    custom_model = gr.Textbox(label="Custom Model", info="Model Hugging Face path (optional)", placeholder="meta-llama/Llama-3.3-70B-Instruct")
                with gr.Row():
                    # Accordion for selecting the model
                    with gr.Accordion("Featured Models", open=True):
                        # Textbox for searching models
                        model_search = gr.Textbox(label="Filter Models", placeholder="Search for a featured model...", lines=1, elem_id="model-search-input")
                        models_list = (
                            "meta-llama/Llama-3.3-70B-Instruct",
                            "meta-llama/Llama-3.3-30B-Instruct",
                            "meta-llama/Llama-3.3-13B-Instruct",
                            "meta-llama/Llama-3.3-7B-Instruct",
                        )

                        # Radio buttons to select the desired model
                        model = gr.Radio(label="Select a model below", value="meta-llama/Llama-3.3-70B-Instruct", choices=models_list, interactive=True, elem_id="model-radio")

                        # Filtering models based on search input
                        def filter_models(search_term):
                            filtered_models = [m for m in models_list if search_term.lower() in m.lower()]
                            return gr.update(choices=filtered_models)

                        # Update model list when search box is used
                        model_search.change(filter_models, inputs=model_search, outputs=model)

    # Tab for advanced settings
    with gr.Tab("Advanced Settings"):
        with gr.Row():
            # Slider for setting the maximum number of new tokens
            max_tokens = gr.Slider(label="Max new tokens", value=512, minimum=1, maximum=4096, step=1)
        with gr.Row():
            # Slider for adjusting the temperature
            temperature = gr.Slider(label="Temperature", value=0.7, minimum=0.1, maximum=4.0, step=0.1)
        with gr.Row():
            # Slider for adjusting the top-p (nucleus) sampling
            top_p = gr.Slider(label="Top-P", value=0.95, minimum=0.1, maximum=1.0, step=0.05)
        with gr.Row():
            # Slider for adjusting the frequency penalty
            frequency_penalty = gr.Slider(label="Frequency Penalty", value=0.0, minimum=-2.0, maximum=2.0, step=0.1)
        with gr.Row():
            # Slider for setting the seed for reproducibility
            seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=65535, step=1)

    # Tab to provide information to the user
    with gr.Tab("Information"):
        with gr.Row():
            # Display a sample prompt for guidance
            gr.Textbox(label="Sample prompt", value="{prompt} | ultra detail, ultra elaboration, ultra quality, perfect.")

        # Accordion displaying featured models
        with gr.Accordion("Featured Models (WiP)", open=False):
            gr.HTML(
                """
            <p><a href="https://huggingface.co/models?inference=warm&pipeline_tag=text-generation&sort=trending">See all available models</a></p>
            <table style="width:100%; text-align:center; margin:auto;">
                <tr>
                    <th>Model Name</th>
                    <th>Typography</th>
                    <th>Notes</th>
                </tr>
                <tr>
                    <td>meta-llama/Llama-3.3-70B-Instruct</td>
                    <td>✅</td>
                    <td></td>
                </tr>
                <tr>
                    <td>meta-llama/Llama-3.3-30B-Instruct</td>
                    <td>✅</td>
                    <td></td>
                </tr>
                <tr>
                    <td>meta-llama/Llama-3.3-13B-Instruct</td>
                    <td>✅</td>
                    <td></td>
                </tr>
                <tr>
                    <td>meta-llama/Llama-3.3-7B-Instruct</td>
                    <td>✅</td>
                    <td></td>
                </tr>
            </table>
            """
            )

        # Accordion providing an overview of advanced settings
        with gr.Accordion("Parameters Overview", open=False):
            gr.Markdown(
            """
            ## System Message
            ###### This box is for setting the system prompt, which guides the AI's behavior and context.

            ## Max New Tokens
            ###### This slider allows you to specify the maximum number of tokens (words or parts of words) the AI will generate in response to your prompt. The default value is 512.

            ## Temperature
            ###### Temperature controls the randomness of the AI's output. A higher temperature makes the output more random and creative, while a lower temperature makes it more predictable and focused.

            ## Top-P (Nucleus Sampling)
            ###### Top-P sampling is a technique that selects the smallest set of top tokens whose cumulative probability exceeds a threshold (p). This helps in generating more coherent and relevant responses.

            ## Frequency Penalty
            ###### This parameter penalizes repeated tokens in the output, encouraging the AI to generate more diverse responses. A higher value means more penalty for repetition.

            ## Seed
            ###### The seed is a value that ensures reproducibility. If you set a specific seed, the AI will generate the same output for the same input. Setting it to -1 means the seed will be random.

            ### Remember, these settings are all about giving you control over the text generation process. Feel free to experiment and see what each one does. And if you're ever in doubt, the default settings are a great place to start. Happy creating!
            """
            )

    # Row containing the 'Run' button to trigger the text generation
    with gr.Row():
        text_button = gr.Button("Run", variant='primary', elem_id="gen-button")
    # Row for displaying the generated text output
    with gr.Row():
        text_output = gr.Textbox(label="Text Output", elem_id="text-output")

    # Set up button click event to call the respond function
    text_button.click(respond, inputs=[text_prompt, chatbot, gr.Textbox(value="", label="System message"), max_tokens, temperature, top_p, frequency_penalty, seed, model], outputs=text_output)

print("Launching Gradio interface...")  # Debug log
# Launch the Gradio interface without showing the API or sharing externally
textgen.launch(show_api=False, share=False)