Spaces:
Running
Running
File size: 11,212 Bytes
038f313 4c18bfc 038f313 880ced6 038f313 4c18bfc 038f313 880ced6 038f313 3a64d68 880ced6 038f313 5b1509d 880ced6 a430d0d 4c18bfc 038f313 880ced6 050af7a 5b1509d 4c18bfc 5b1509d 038f313 880ced6 4c18bfc 880ced6 038f313 5b1509d 880ced6 5b1509d 880ced6 038f313 4c18bfc 038f313 4c18bfc 038f313 880ced6 4c18bfc 5b1509d 880ced6 038f313 880ced6 038f313 542c2ac 038f313 880ced6 5b1509d 880ced6 5b1509d 038f313 3a64d68 4c18bfc 880ced6 542c2ac 880ced6 542c2ac 880ced6 542c2ac 880ced6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
import gradio as gr
from openai import OpenAI
import os
# Retrieve the access token from the environment variable
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")
# Initialize the OpenAI client with the Hugging Face Inference API endpoint
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1/",
api_key=ACCESS_TOKEN,
)
print("OpenAI client initialized.")
def respond(
message,
history: list[tuple[str, str]],
system_message,
custom_model,
model,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed
):
"""
This function handles the chatbot response. It takes in:
- message: the user's new message
- history: the list of previous messages, each as a tuple (user_msg, assistant_msg)
- system_message: the system prompt
- custom_model: custom model path (if any)
- model: selected model from featured models
- max_tokens: the maximum number of tokens to generate in the response
- temperature: sampling temperature
- top_p: top-p (nucleus) sampling
- frequency_penalty: penalize repeated tokens in the output
- seed: a fixed seed for reproducibility; -1 will mean 'random'
"""
print(f"Received message: {message}")
print(f"History: {history}")
print(f"System message: {system_message}")
print(f"Custom model: {custom_model}")
print(f"Selected model: {model}")
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
# Convert seed to None if -1 (meaning random)
if seed == -1:
seed = None
# Construct the messages array required by the API
messages = [{"role": "system", "content": system_message}]
# Add conversation history to the context
for val in history:
user_part = val[0]
assistant_part = val[1]
if user_part:
messages.append({"role": "user", "content": user_part})
print(f"Added user message to context: {user_part}")
if assistant_part:
messages.append({"role": "assistant", "content": assistant_part})
print(f"Added assistant message to context: {assistant_part}")
# Append the latest user message
messages.append({"role": "user", "content": message})
# Start with an empty string to build the response as tokens stream in
response = ""
print("Sending request to OpenAI API.")
# Determine which model to use
if custom_model.strip():
selected_model = custom_model.strip()
else:
# Map the display names to actual model paths
model_mapping = {
"Llama 2 70B": "meta-llama/Llama-2-70b-chat-hf",
"Mixtral 8x7B": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"Zephyr 7B": "HuggingFaceH4/zephyr-7b-beta",
"OpenChat 3.5": "openchat/openchat-3.5-0106",
}
selected_model = model_mapping.get(model, "meta-llama/Llama-2-70b-chat-hf")
# Make the streaming request to the HF Inference API via openai-like client
for message_chunk in client.chat.completions.create(
model=selected_model,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
frequency_penalty=frequency_penalty,
seed=seed,
messages=messages,
):
# Extract the token text from the response chunk
token_text = message_chunk.choices[0].delta.content
print(f"Received token: {token_text}")
response += token_text
yield response
print("Completed response generation.")
# Create a Chatbot component with a specified height
chatbot = gr.Chatbot(height=600)
print("Chatbot interface created.")
# Create the Gradio interface with tabs
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
with gr.Row():
with gr.Column():
# Basic Settings Tab
with gr.Tab("Settings"):
# System Message
system_message = gr.Textbox(
value="",
label="System message",
placeholder="Enter a system message to guide the model's behavior"
)
# Model Selection Section
with gr.Accordion("Featured Models", open=True):
# Model Search
model_search = gr.Textbox(
label="Filter Models",
placeholder="Search for a featured model...",
lines=1
)
# Featured Models List
models_list = [
"Llama 2 70B",
"Mixtral 8x7B",
"Zephyr 7B",
"OpenChat 3.5"
]
model = gr.Radio(
label="Select a model",
choices=models_list,
value="Llama 2 70B"
)
# Custom Model Input
custom_model = gr.Textbox(
label="Custom Model",
info="Hugging Face model path (optional)",
placeholder="meta-llama/Llama-2-70b-chat-hf"
)
# Function to filter models
def filter_models(search_term):
filtered_models = [m for m in models_list if search_term.lower() in m.lower()]
return gr.update(choices=filtered_models)
# Update model list when search box is used
model_search.change(filter_models, inputs=model_search, outputs=model)
# Generation Parameters
with gr.Row():
max_tokens = gr.Slider(
minimum=1,
maximum=4096,
value=512,
step=1,
label="Max new tokens"
)
temperature = gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.7,
step=0.1,
label="Temperature"
)
with gr.Row():
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-P"
)
frequency_penalty = gr.Slider(
minimum=-2.0,
maximum=2.0,
value=0.0,
step=0.1,
label="Frequency Penalty"
)
with gr.Row():
seed = gr.Slider(
minimum=-1,
maximum=65535,
value=-1,
step=1,
label="Seed (-1 for random)"
)
# Information Tab
with gr.Tab("Information"):
# Featured Models Table
with gr.Accordion("Featured Models", open=True):
gr.HTML(
"""
<p><a href="https://huggingface.co/models?inference=warm&pipeline_tag=text-to-text">See all available models</a></p>
<table style="width:100%; text-align:center; margin:auto;">
<tr>
<th>Model Name</th>
<th>Size</th>
<th>Notes</th>
</tr>
<tr>
<td>Llama 2 70B</td>
<td>70B</td>
<td>Meta's flagship model</td>
</tr>
<tr>
<td>Mixtral 8x7B</td>
<td>47B</td>
<td>Mistral AI's MoE model</td>
</tr>
<tr>
<td>Zephyr 7B</td>
<td>7B</td>
<td>Efficient fine-tuned model</td>
</tr>
<tr>
<td>OpenChat 3.5</td>
<td>7B</td>
<td>High performance chat model</td>
</tr>
</table>
"""
)
# Parameters Overview
with gr.Accordion("Parameters Overview", open=False):
gr.Markdown(
"""
## System Message
A message that sets the context and behavior for the model. This helps guide the model's responses.
## Max New Tokens
Controls the maximum length of the generated response. Higher values allow for longer outputs but may take more time.
## Temperature
Controls randomness in the output:
- Lower values (0.1-0.5): More focused and deterministic
- Higher values (0.7-1.0): More creative and diverse
- Very high values (>1.0): More random and potentially chaotic
## Top-P (Nucleus Sampling)
Controls the cumulative probability threshold for token selection:
- Lower values: More focused on highly likely tokens
- Higher values: Considers a wider range of possibilities
## Frequency Penalty
Adjusts the likelihood of token repetition:
- Negative values: May encourage repetition
- Zero: Neutral
- Positive values: Discourages repetition
## Seed
A number that controls the randomness in generation:
- -1: Random seed each time
- Fixed value: Reproducible outputs with same parameters
"""
)
# Set up the chat interface
chatbot = gr.Chatbot(height=600)
msg = gr.Textbox(label="Message")
clear = gr.ClearButton([msg, chatbot])
msg.submit(respond, [msg, chatbot, system_message, custom_model, model, max_tokens, temperature, top_p, frequency_penalty, seed], [chatbot, msg])
print("Launching the demo application.")
demo.launch(show_api=False, share=False) |