File size: 11,212 Bytes
038f313
 
4c18bfc
038f313
880ced6
 
038f313
 
4c18bfc
038f313
 
 
 
 
 
 
 
 
 
880ced6
 
038f313
 
 
3a64d68
880ced6
038f313
5b1509d
880ced6
 
 
 
 
 
 
 
 
 
 
a430d0d
4c18bfc
038f313
 
 
880ced6
 
050af7a
5b1509d
 
4c18bfc
5b1509d
 
038f313
880ced6
 
4c18bfc
880ced6
038f313
5b1509d
 
 
 
880ced6
5b1509d
 
880ced6
038f313
4c18bfc
038f313
 
4c18bfc
038f313
880ced6
 
 
 
 
 
 
 
 
 
 
 
 
 
4c18bfc
 
5b1509d
880ced6
038f313
880ced6
038f313
 
542c2ac
 
038f313
 
880ced6
5b1509d
880ced6
5b1509d
038f313
 
 
3a64d68
4c18bfc
 
880ced6
542c2ac
880ced6
542c2ac
880ced6
 
 
 
 
 
 
542c2ac
880ced6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import gradio as gr
from openai import OpenAI
import os

# Retrieve the access token from the environment variable
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")

# Initialize the OpenAI client with the Hugging Face Inference API endpoint
client = OpenAI(
    base_url="https://api-inference.huggingface.co/v1/",
    api_key=ACCESS_TOKEN,
)
print("OpenAI client initialized.")

def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    custom_model,
    model,
    max_tokens,
    temperature,
    top_p,
    frequency_penalty,
    seed
):
    """
    This function handles the chatbot response. It takes in:
    - message: the user's new message
    - history: the list of previous messages, each as a tuple (user_msg, assistant_msg)
    - system_message: the system prompt
    - custom_model: custom model path (if any)
    - model: selected model from featured models
    - max_tokens: the maximum number of tokens to generate in the response
    - temperature: sampling temperature
    - top_p: top-p (nucleus) sampling
    - frequency_penalty: penalize repeated tokens in the output
    - seed: a fixed seed for reproducibility; -1 will mean 'random'
    """

    print(f"Received message: {message}")
    print(f"History: {history}")
    print(f"System message: {system_message}")
    print(f"Custom model: {custom_model}")
    print(f"Selected model: {model}")
    print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
    print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")

    # Convert seed to None if -1 (meaning random)
    if seed == -1:
        seed = None

    # Construct the messages array required by the API
    messages = [{"role": "system", "content": system_message}]

    # Add conversation history to the context
    for val in history:
        user_part = val[0]
        assistant_part = val[1]
        if user_part:
            messages.append({"role": "user", "content": user_part})
            print(f"Added user message to context: {user_part}")
        if assistant_part:
            messages.append({"role": "assistant", "content": assistant_part})
            print(f"Added assistant message to context: {assistant_part}")

    # Append the latest user message
    messages.append({"role": "user", "content": message})

    # Start with an empty string to build the response as tokens stream in
    response = ""
    print("Sending request to OpenAI API.")

    # Determine which model to use
    if custom_model.strip():
        selected_model = custom_model.strip()
    else:
        # Map the display names to actual model paths
        model_mapping = {
            "Llama 2 70B": "meta-llama/Llama-2-70b-chat-hf",
            "Mixtral 8x7B": "mistralai/Mixtral-8x7B-Instruct-v0.1",
            "Zephyr 7B": "HuggingFaceH4/zephyr-7b-beta",
            "OpenChat 3.5": "openchat/openchat-3.5-0106",
        }
        selected_model = model_mapping.get(model, "meta-llama/Llama-2-70b-chat-hf")

    # Make the streaming request to the HF Inference API via openai-like client
    for message_chunk in client.chat.completions.create(
        model=selected_model,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
        frequency_penalty=frequency_penalty,
        seed=seed,
        messages=messages,
    ):
        # Extract the token text from the response chunk
        token_text = message_chunk.choices[0].delta.content
        print(f"Received token: {token_text}")
        response += token_text
        yield response

    print("Completed response generation.")

# Create a Chatbot component with a specified height
chatbot = gr.Chatbot(height=600)
print("Chatbot interface created.")

# Create the Gradio interface with tabs
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
    with gr.Row():
        with gr.Column():
            # Basic Settings Tab
            with gr.Tab("Settings"):
                # System Message
                system_message = gr.Textbox(
                    value="", 
                    label="System message",
                    placeholder="Enter a system message to guide the model's behavior"
                )
                
                # Model Selection Section
                with gr.Accordion("Featured Models", open=True):
                    # Model Search
                    model_search = gr.Textbox(
                        label="Filter Models",
                        placeholder="Search for a featured model...",
                        lines=1
                    )
                    
                    # Featured Models List
                    models_list = [
                        "Llama 2 70B",
                        "Mixtral 8x7B",
                        "Zephyr 7B",
                        "OpenChat 3.5"
                    ]
                    
                    model = gr.Radio(
                        label="Select a model",
                        choices=models_list,
                        value="Llama 2 70B"
                    )
                    
                    # Custom Model Input
                    custom_model = gr.Textbox(
                        label="Custom Model",
                        info="Hugging Face model path (optional)",
                        placeholder="meta-llama/Llama-2-70b-chat-hf"
                    )
                    
                    # Function to filter models
                    def filter_models(search_term):
                        filtered_models = [m for m in models_list if search_term.lower() in m.lower()]
                        return gr.update(choices=filtered_models)
                    
                    # Update model list when search box is used
                    model_search.change(filter_models, inputs=model_search, outputs=model)
                
                # Generation Parameters
                with gr.Row():
                    max_tokens = gr.Slider(
                        minimum=1,
                        maximum=4096,
                        value=512,
                        step=1,
                        label="Max new tokens"
                    )
                    temperature = gr.Slider(
                        minimum=0.1,
                        maximum=4.0,
                        value=0.7,
                        step=0.1,
                        label="Temperature"
                    )
                
                with gr.Row():
                    top_p = gr.Slider(
                        minimum=0.1,
                        maximum=1.0,
                        value=0.95,
                        step=0.05,
                        label="Top-P"
                    )
                    frequency_penalty = gr.Slider(
                        minimum=-2.0,
                        maximum=2.0,
                        value=0.0,
                        step=0.1,
                        label="Frequency Penalty"
                    )
                
                with gr.Row():
                    seed = gr.Slider(
                        minimum=-1,
                        maximum=65535,
                        value=-1,
                        step=1,
                        label="Seed (-1 for random)"
                    )
            
            # Information Tab
            with gr.Tab("Information"):
                # Featured Models Table
                with gr.Accordion("Featured Models", open=True):
                    gr.HTML(
                        """
                        <p><a href="https://huggingface.co/models?inference=warm&pipeline_tag=text-to-text">See all available models</a></p>
                        <table style="width:100%; text-align:center; margin:auto;">
                            <tr>
                                <th>Model Name</th>
                                <th>Size</th>
                                <th>Notes</th>
                            </tr>
                            <tr>
                                <td>Llama 2 70B</td>
                                <td>70B</td>
                                <td>Meta's flagship model</td>
                            </tr>
                            <tr>
                                <td>Mixtral 8x7B</td>
                                <td>47B</td>
                                <td>Mistral AI's MoE model</td>
                            </tr>
                            <tr>
                                <td>Zephyr 7B</td>
                                <td>7B</td>
                                <td>Efficient fine-tuned model</td>
                            </tr>
                            <tr>
                                <td>OpenChat 3.5</td>
                                <td>7B</td>
                                <td>High performance chat model</td>
                            </tr>
                        </table>
                        """
                    )
                
                # Parameters Overview
                with gr.Accordion("Parameters Overview", open=False):
                    gr.Markdown(
                        """
                        ## System Message
                        A message that sets the context and behavior for the model. This helps guide the model's responses.

                        ## Max New Tokens
                        Controls the maximum length of the generated response. Higher values allow for longer outputs but may take more time.

                        ## Temperature
                        Controls randomness in the output:
                        - Lower values (0.1-0.5): More focused and deterministic
                        - Higher values (0.7-1.0): More creative and diverse
                        - Very high values (>1.0): More random and potentially chaotic

                        ## Top-P (Nucleus Sampling)
                        Controls the cumulative probability threshold for token selection:
                        - Lower values: More focused on highly likely tokens
                        - Higher values: Considers a wider range of possibilities
                        
                        ## Frequency Penalty
                        Adjusts the likelihood of token repetition:
                        - Negative values: May encourage repetition
                        - Zero: Neutral
                        - Positive values: Discourages repetition

                        ## Seed
                        A number that controls the randomness in generation:
                        - -1: Random seed each time
                        - Fixed value: Reproducible outputs with same parameters
                        """
                    )

    # Set up the chat interface
    chatbot = gr.Chatbot(height=600)
    msg = gr.Textbox(label="Message")
    
    clear = gr.ClearButton([msg, chatbot])
    
    msg.submit(respond, [msg, chatbot, system_message, custom_model, model, max_tokens, temperature, top_p, frequency_penalty, seed], [chatbot, msg])

print("Launching the demo application.")
demo.launch(show_api=False, share=False)