File size: 5,939 Bytes
038f313
 
4c18bfc
038f313
880ced6
 
038f313
 
4c18bfc
038f313
 
 
 
 
 
 
 
 
69b4a5f
038f313
 
 
3a64d68
d735dab
7d3730f
 
038f313
5b1509d
7d3730f
a430d0d
7d3730f
 
d735dab
5b1509d
 
038f313
880ced6
038f313
7d3730f
 
 
 
038f313
 
 
5b1509d
7d3730f
038f313
7d3730f
038f313
 
21137c4
 
038f313
 
5b1509d
 
038f313
 
d735dab
4c18bfc
542c2ac
7d3730f
21137c4
 
7d3730f
 
 
 
21137c4
 
d735dab
7d3730f
 
d735dab
7d3730f
d735dab
21137c4
7d3730f
 
 
 
 
21137c4
7d3730f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d735dab
7d3730f
 
 
 
 
 
 
 
 
21137c4
 
 
7d3730f
21137c4
 
 
7d3730f
21137c4
 
7d3730f
 
21137c4
 
7d3730f
 
21137c4
 
 
7d3730f
 
 
d735dab
21137c4
7d3730f
21137c4
7d3730f
 
21137c4
 
7d3730f
21137c4
 
7d3730f
21137c4
 
7d3730f
21137c4
 
7d3730f
21137c4
7d3730f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21137c4
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import gradio as gr
from openai import OpenAI
import os

# Retrieve the access token from the environment variable
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")

# Initialize the OpenAI client with the Hugging Face Inference API endpoint
client = OpenAI(
    base_url="https://api-inference.huggingface.co/v1/",
    api_key=ACCESS_TOKEN,
)
print("OpenAI client initialized.")

def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
    frequency_penalty,
    seed,
    model_selection,
    custom_model
):
    """
    This function handles the chatbot response.
    """
    selected_model = custom_model if custom_model.strip() != "" else model_selection
    print(f"Selected model: {selected_model}")

    if seed == -1:
        seed = None

    messages = [{"role": "system", "content": system_message}]
    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})
    messages.append({"role": "user", "content": message})

    response = ""
    for message_chunk in client.chat.completions.create(
        model=selected_model,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
        frequency_penalty=frequency_penalty,
        seed=seed,
        messages=messages,
    ):
        token_text = message_chunk.choices[0].delta.content
        response += token_text
        yield response

# Create a Chatbot component with a specified height
chatbot = gr.Chatbot(height=600)

# Define placeholder models
featured_models = [
    "meta-llama/Llama-3.3-70B-Instruct",
    "gpt2",
    "bert-base-uncased",
    "facebook/bart-base",
    "google/flan-t5-base"
]

# Create the Gradio ChatInterface
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
    gr.Markdown("# Serverless Text Generation Hub")

    with gr.Tab("Basic Settings"):
        with gr.Row():
            with gr.Column():
                # Textbox for system message
                system_message = gr.Textbox(value="", label="System message")
        with gr.Row():
            with gr.Column():
                # Model selection
                with gr.Accordion("Featured Models", open=True):
                    model_search = gr.Textbox(label="Filter Models", placeholder="Search for a featured model...")
                    model = gr.Radio(label="Select a model", choices=featured_models, value="meta-llama/Llama-3.3-70B-Instruct")

                    def filter_models(search_term):
                        filtered_models = [m for m in featured_models if search_term.lower() in m.lower()]
                        return gr.update(choices=filtered_models)

                    model_search.change(filter_models, inputs=model_search, outputs=model)
        with gr.Row():
            with gr.Column():
                # Custom model input
                custom_model = gr.Textbox(label="Custom Model", placeholder="Enter a custom model name")

    with gr.Tab("Advanced Settings"):
        with gr.Row():
            max_tokens = gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens")
            temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
        with gr.Row():
            top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P")
            frequency_penalty = gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty")
        with gr.Row():
            seed = gr.Slider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)")

    with gr.Tab("Information"):
        with gr.Accordion("Featured Models", open=False):
            gr.Markdown(
                """
                <table style="width:100%; text-align:center; margin:auto;">
                    <tr>
                        <th>Model Name</th>
                        <th>Description</th>
                    </tr>
                    <tr>
                        <td>meta-llama/Llama-3.3-70B-Instruct</td>
                        <td>Highly capable Llama model</td>
                    </tr>
                    <tr>
                        <td>gpt2</td>
                        <td>Generative Pre-trained Transformer 2</td>
                    </tr>
                    <tr>
                        <td>bert-base-uncased</td>
                        <td>Bidirectional Encoder Representations from Transformers</td>
                    </tr>
                </table>
                """
            )
        with gr.Accordion("Parameters Overview", open=False):
            gr.Markdown(
                """
                ## System Message
                ###### Sets the behavior and tone of the assistant.

                ## Max New Tokens
                ###### Determines the maximum length of the response.

                ## Temperature
                ###### Controls the randomness of the output. Lower values make the output more deterministic.

                ## Top-P
                ###### Used for nucleus sampling. Higher values include more tokens in consideration.

                ## Frequency Penalty
                ###### Penalizes the model for repeating the same tokens.

                ## Seed
                ###### Ensures reproducibility of results.
                """
            )

    # Chat interface
    demo = gr.ChatInterface(
        respond,
        additional_inputs=[
            system_message,
            max_tokens,
            temperature,
            top_p,
            frequency_penalty,
            seed,
            model,
            custom_model
        ],
        chatbot=chatbot,
        theme="Nymbo/Nymbo_Theme"
    )

if __name__ == "__main__":
    print("Launching the demo application.")
    demo.launch()