Spaces:
Running
Running
File size: 5,939 Bytes
038f313 4c18bfc 038f313 880ced6 038f313 4c18bfc 038f313 69b4a5f 038f313 3a64d68 d735dab 7d3730f 038f313 5b1509d 7d3730f a430d0d 7d3730f d735dab 5b1509d 038f313 880ced6 038f313 7d3730f 038f313 5b1509d 7d3730f 038f313 7d3730f 038f313 21137c4 038f313 5b1509d 038f313 d735dab 4c18bfc 542c2ac 7d3730f 21137c4 7d3730f 21137c4 d735dab 7d3730f d735dab 7d3730f d735dab 21137c4 7d3730f 21137c4 7d3730f d735dab 7d3730f 21137c4 7d3730f 21137c4 7d3730f 21137c4 7d3730f 21137c4 7d3730f 21137c4 7d3730f d735dab 21137c4 7d3730f 21137c4 7d3730f 21137c4 7d3730f 21137c4 7d3730f 21137c4 7d3730f 21137c4 7d3730f 21137c4 7d3730f 21137c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import gradio as gr
from openai import OpenAI
import os
# Retrieve the access token from the environment variable
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")
# Initialize the OpenAI client with the Hugging Face Inference API endpoint
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1/",
api_key=ACCESS_TOKEN,
)
print("OpenAI client initialized.")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
model_selection,
custom_model
):
"""
This function handles the chatbot response.
"""
selected_model = custom_model if custom_model.strip() != "" else model_selection
print(f"Selected model: {selected_model}")
if seed == -1:
seed = None
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message_chunk in client.chat.completions.create(
model=selected_model,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
frequency_penalty=frequency_penalty,
seed=seed,
messages=messages,
):
token_text = message_chunk.choices[0].delta.content
response += token_text
yield response
# Create a Chatbot component with a specified height
chatbot = gr.Chatbot(height=600)
# Define placeholder models
featured_models = [
"meta-llama/Llama-3.3-70B-Instruct",
"gpt2",
"bert-base-uncased",
"facebook/bart-base",
"google/flan-t5-base"
]
# Create the Gradio ChatInterface
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
gr.Markdown("# Serverless Text Generation Hub")
with gr.Tab("Basic Settings"):
with gr.Row():
with gr.Column():
# Textbox for system message
system_message = gr.Textbox(value="", label="System message")
with gr.Row():
with gr.Column():
# Model selection
with gr.Accordion("Featured Models", open=True):
model_search = gr.Textbox(label="Filter Models", placeholder="Search for a featured model...")
model = gr.Radio(label="Select a model", choices=featured_models, value="meta-llama/Llama-3.3-70B-Instruct")
def filter_models(search_term):
filtered_models = [m for m in featured_models if search_term.lower() in m.lower()]
return gr.update(choices=filtered_models)
model_search.change(filter_models, inputs=model_search, outputs=model)
with gr.Row():
with gr.Column():
# Custom model input
custom_model = gr.Textbox(label="Custom Model", placeholder="Enter a custom model name")
with gr.Tab("Advanced Settings"):
with gr.Row():
max_tokens = gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens")
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
with gr.Row():
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P")
frequency_penalty = gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty")
with gr.Row():
seed = gr.Slider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)")
with gr.Tab("Information"):
with gr.Accordion("Featured Models", open=False):
gr.Markdown(
"""
<table style="width:100%; text-align:center; margin:auto;">
<tr>
<th>Model Name</th>
<th>Description</th>
</tr>
<tr>
<td>meta-llama/Llama-3.3-70B-Instruct</td>
<td>Highly capable Llama model</td>
</tr>
<tr>
<td>gpt2</td>
<td>Generative Pre-trained Transformer 2</td>
</tr>
<tr>
<td>bert-base-uncased</td>
<td>Bidirectional Encoder Representations from Transformers</td>
</tr>
</table>
"""
)
with gr.Accordion("Parameters Overview", open=False):
gr.Markdown(
"""
## System Message
###### Sets the behavior and tone of the assistant.
## Max New Tokens
###### Determines the maximum length of the response.
## Temperature
###### Controls the randomness of the output. Lower values make the output more deterministic.
## Top-P
###### Used for nucleus sampling. Higher values include more tokens in consideration.
## Frequency Penalty
###### Penalizes the model for repeating the same tokens.
## Seed
###### Ensures reproducibility of results.
"""
)
# Chat interface
demo = gr.ChatInterface(
respond,
additional_inputs=[
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
model,
custom_model
],
chatbot=chatbot,
theme="Nymbo/Nymbo_Theme"
)
if __name__ == "__main__":
print("Launching the demo application.")
demo.launch() |