Spaces:
Running
Running
File size: 7,361 Bytes
038f313 4c18bfc 038f313 880ced6 038f313 4c18bfc 038f313 880ced6 69b4a5f 038f313 3a64d68 880ced6 038f313 5b1509d 69b4a5f a430d0d 038f313 69b4a5f 880ced6 69b4a5f 5b1509d 69b4a5f 5b1509d 038f313 69b4a5f 880ced6 4c18bfc 69b4a5f 038f313 5b1509d 038f313 69b4a5f 038f313 69b4a5f 038f313 69b4a5f 880ced6 69b4a5f 5b1509d 880ced6 038f313 880ced6 038f313 542c2ac 038f313 5b1509d 880ced6 5b1509d 038f313 3a64d68 69b4a5f 4c18bfc 880ced6 542c2ac 69b4a5f 880ced6 542c2ac 69b4a5f 880ced6 69b4a5f 880ced6 69b4a5f 880ced6 69b4a5f 880ced6 69b4a5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import gradio as gr
from openai import OpenAI
import os
# Retrieve the access token from the environment variable
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")
# Initialize the OpenAI client with the Hugging Face Inference API endpoint
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1/",
api_key=ACCESS_TOKEN,
)
print("OpenAI client initialized.")
def respond(
message,
history: list[tuple[str, str]],
model,
custom_model,
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed
):
"""
This function handles the chatbot response.
"""
print(f"Received message: {message}")
print(f"History: {history}")
print(f"Model: {model}")
print(f"Custom model: {custom_model}")
print(f"System message: {system_message}")
print(f"Parameters - Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
# Convert seed to None if -1
if seed == -1:
seed = None
# Set the model based on selection or custom input
selected_model = custom_model.strip() if custom_model.strip() != "" else model
# Construct messages array
messages = [{"role": "system", "content": system_message}]
# Add conversation history
for val in history:
user_part = val[0]
assistant_part = val[1]
if user_part:
messages.append({"role": "user", "content": user_part})
if assistant_part:
messages.append({"role": "assistant", "content": assistant_part})
# Append latest message
messages.append({"role": "user", "content": message})
# Start with empty response
response = ""
print("Sending request to API.")
# Make the streaming request
for message_chunk in client.chat.completions.create(
model=selected_model,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
frequency_penalty=frequency_penalty,
seed=seed,
messages=messages,
):
token_text = message_chunk.choices[0].delta.content
print(f"Received token: {token_text}")
response += token_text
yield response
print("Completed response generation.")
# Create Chatbot component
chatbot = gr.Chatbot(height=600)
print("Chatbot interface created.")
# Define available models
models_list = [
"meta-llama/Llama-2-70b-chat-hf",
"meta-llama/Llama-2-13b-chat-hf",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"mistralai/Mistral-7B-Instruct-v0.2",
"HuggingFaceH4/zephyr-7b-beta",
]
# Create the Gradio interface with tabs
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
with gr.Tab("Chat"):
with gr.Row():
with gr.Column():
# Model selection accordion
with gr.Accordion("Featured Models", open=True):
model_search = gr.Textbox(
label="Filter Models",
placeholder="Search for a model...",
lines=1
)
model = gr.Radio(
label="Select a model",
choices=models_list,
value="meta-llama/Llama-2-70b-chat-hf"
)
# Custom model input
custom_model = gr.Textbox(
label="Custom Model",
info="Enter Hugging Face model path (optional)",
placeholder="organization/model-name"
)
# System message and parameters
system_message = gr.Textbox(label="System message")
max_tokens = gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens")
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P")
frequency_penalty = gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty")
seed = gr.Slider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)")
with gr.Tab("Information"):
with gr.Accordion("Featured Models", open=False):
gr.HTML("""
<p><a href="https://huggingface.co/models?pipeline_tag=text-generation&sort=trending">See all available models</a></p>
<table style="width:100%; text-align:center; margin:auto;">
<tr>
<th>Model Name</th>
<th>Parameters</th>
<th>Notes</th>
</tr>
<tr>
<td>Llama-2-70b-chat</td>
<td>70B</td>
<td>Meta's largest chat model</td>
</tr>
<tr>
<td>Mixtral-8x7B</td>
<td>47B</td>
<td>Mixture of Experts architecture</td>
</tr>
<tr>
<td>Mistral-7B</td>
<td>7B</td>
<td>Efficient base model</td>
</tr>
</table>
""")
with gr.Accordion("Parameters Overview", open=False):
gr.Markdown("""
## System Message
The system message sets the context and behavior for the AI assistant. It's like giving it a role or specific instructions.
## Max New Tokens
Controls the maximum length of the generated response. Higher values allow for longer responses but take more time.
## Temperature
Controls randomness in the response:
- Lower (0.1-0.5): More focused and deterministic
- Higher (0.7-1.0): More creative and varied
## Top-P
Nucleus sampling parameter:
- Lower values: More focused on likely tokens
- Higher values: More diverse vocabulary usage
## Frequency Penalty
Discourages repetition:
- Negative: May allow more repetition
- Positive: Encourages more diverse word choice
## Seed
Controls randomness initialization:
- -1: Random seed each time
- Fixed value: Reproducible outputs
""")
# Function to filter models based on search
def filter_models(search_term):
filtered_models = [m for m in models_list if search_term.lower() in m.lower()]
return gr.update(choices=filtered_models)
# Connect the search box to the model filter function
model_search.change(filter_models, inputs=model_search, outputs=model)
# Create the chat interface
chat_interface = gr.ChatInterface(
respond,
additional_inputs=[
model,
custom_model,
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
],
chatbot=chatbot,
)
print("Gradio interface initialized.")
if __name__ == "__main__":
print("Launching the demo application.")
demo.launch(show_api=False, share=False) |