File size: 12,414 Bytes
038f313
 
4c18bfc
038f313
542c2ac
 
 
 
 
 
 
 
 
 
 
 
 
038f313
 
4c18bfc
038f313
 
 
 
 
 
 
 
 
 
 
 
 
3a64d68
542c2ac
 
 
 
 
038f313
5b1509d
542c2ac
 
 
 
 
 
 
 
 
 
 
 
 
 
a430d0d
4c18bfc
542c2ac
038f313
 
 
050af7a
5b1509d
542c2ac
 
 
5b1509d
4c18bfc
5b1509d
 
038f313
542c2ac
 
 
 
 
 
 
4c18bfc
542c2ac
 
 
038f313
5b1509d
 
 
 
 
 
038f313
4c18bfc
038f313
 
4c18bfc
038f313
542c2ac
 
4c18bfc
 
542c2ac
5b1509d
542c2ac
038f313
542c2ac
038f313
 
542c2ac
 
038f313
 
542c2ac
5b1509d
 
542c2ac
038f313
 
 
3a64d68
4c18bfc
 
542c2ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c18bfc
038f313
542c2ac
 
 
038f313
542c2ac
038f313
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import gradio as gr
from openai import OpenAI
import os

# --------------------------------------------------------------------------------
#  Serverless-TextGen-Hub
#  This application is a Gradio-based UI for text generation using
#  Hugging Face's serverless Inference API. We also incorporate features
#  inspired by the ImgGen-Hub, such as:
#    - A "Featured Models" accordion with text filtering.
#    - A "Custom Model" textbox for specifying a non-featured model.
#    - An "Information" tab with accordions for "Featured Models" and 
#      "Parameters Overview" containing helpful user guides.
# --------------------------------------------------------------------------------

# Retrieve the access token from environment variables
ACCESS_TOKEN = os.getenv("HF_TOKEN")  # HF_TOKEN is your Hugging Face Inference API key
print("Access token loaded.")

# Initialize the OpenAI client with the Hugging Face Inference API endpoint
client = OpenAI(
    base_url="https://api-inference.huggingface.co/v1/",
    api_key=ACCESS_TOKEN,
)
print("OpenAI client initialized.")

def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
    frequency_penalty,
    seed,
    # NEW inputs for model selection
    model_search,
    selected_model,
    custom_model
):
    """
    This function handles the chatbot response.

    Parameters:
    - message: The user's newest message (string).
    - history: The list of previous messages in the conversation, each as a tuple (user_msg, assistant_msg).
    - system_message: The system prompt provided.
    - max_tokens: The maximum number of tokens to generate in the response.
    - temperature: Sampling temperature (float).
    - top_p: Top-p (nucleus) sampling (float).
    - frequency_penalty: Penalize repeated tokens in the output (float).
    - seed: A fixed seed for reproducibility; -1 means 'random'.
    - model_search: The text used to filter the "Featured Models" Radio button list (unused here directly, but updated by the UI).
    - selected_model: The model selected via the "Featured Models" Radio button.
    - custom_model: If not empty, overrides selected_model with this custom path.
    """

    # DEBUG LOGGING
    print(f"Received message: {message}")
    print(f"History: {history}")
    print(f"System message: {system_message}")
    print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
    print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
    print(f"Model search text: {model_search}")
    print(f"Selected featured model: {selected_model}")
    print(f"Custom model (overrides if not empty): {custom_model}")

    # Convert seed to None if -1 (meaning random)
    if seed == -1:
        seed = None

    # Determine the final model name to use
    # If the custom_model textbox is non-empty, we use that.
    # Otherwise, we use the selected model from the Radio buttons.
    if custom_model.strip():
        model_to_use = custom_model.strip()
    else:
        model_to_use = selected_model

    # Construct the messages array required by the OpenAI-like HF API
    messages = [{"role": "system", "content": system_message}]  # System prompt
    # Add conversation history to context
    for val in history:
        user_part = val[0]
        assistant_part = val[1]
        if user_part:
            messages.append({"role": "user", "content": user_part})
        if assistant_part:
            messages.append({"role": "assistant", "content": assistant_part})

    # Append the latest user message
    messages.append({"role": "user", "content": message})

    # Start with an empty string to build the response as tokens stream in
    response = ""
    print(f"Using model: {model_to_use}")
    print("Sending request to OpenAI API...")

    # Make the streaming request to the HF Inference API via openai-like client
    # Below, we pass 'model_to_use' instead of a hard-coded model
    for message_chunk in client.chat.completions.create(
        model=model_to_use,             # <-- model is now dynamically selected
        max_tokens=max_tokens,
        stream=True,                    # Stream the response
        temperature=temperature,
        top_p=top_p,
        frequency_penalty=frequency_penalty,
        seed=seed,
        messages=messages,
    ):
        # Extract token text from the response chunk
        token_text = message_chunk.choices[0].delta.content
        response += token_text
        # As we get new tokens, we stream them back to the user
        yield response

    print("Completed response generation.")

# Create a Chatbot component with a specified height
chatbot = gr.Chatbot(height=600)

# ------------------------------------------------------------
# Below: We define the UI with additional features integrated.
# We'll replicate some of the style from the ImgGen-Hub code:
#  - A "Featured Models" accordion with the ability to filter
#  - A "Custom Model" text box
#  - An "Information" tab with "Featured Models" table and 
#    "Parameters Overview" containing markdown descriptions.
# ------------------------------------------------------------

# List of placeholder "Featured Models" for demonstration
featured_models_list = [
    "meta-llama/Llama-3.3-70B-Instruct",
    "meta-llama/Llama-2-70B-chat-hf",
    "meta-llama/Llama-2-13B-chat-hf",
    "bigscience/bloom",
    "google/flan-t5-xxl",
]

# This function filters the models in featured_models_list based on user input
def filter_models(search_term):
    """
    Filters featured_models_list based on the text in 'search_term'.
    """
    filtered = [m for m in featured_models_list if search_term.lower() in m.lower()]
    return gr.update(choices=filtered)

print("Initializing Gradio interface...")  # Debug log

# We build a custom Blocks layout to incorporate tabs and advanced UI elements
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:

    # Top-level heading for clarity
    gr.Markdown("# Serverless-TextGen-Hub\nA Comprehensive UI for Text Generation")

    with gr.Tab("Chat"):
        # We'll place the ChatInterface within this tab

        # Create the additional UI elements in a collapsible or visible layout
        with gr.Accordion("Featured Models", open=False):
            with gr.Row():
                model_search = gr.Textbox(
                    label="Filter Models", 
                    placeholder="Search for a featured model...",
                    lines=1,
                )
            with gr.Row():
                model_radio = gr.Radio(
                    label="Select a featured model below",
                    choices=featured_models_list,
                    value="meta-llama/Llama-3.3-70B-Instruct",
                    interactive=True,
                )
            # On change of model_search, we update the radio choices
            model_search.change(
                filter_models,
                inputs=model_search,
                outputs=model_radio
            )

        # Textbox for specifying a custom model that overrides the featured selection if not empty
        custom_model = gr.Textbox(
            label="Custom Model Path (overrides Featured Models if not empty)",
            placeholder="e.g. meta-llama/Llama-2-13B-chat-hf",
            lines=1
        )

        # Build the chat interface itself
        # We'll pass "model_search", "model_radio", and "custom_model" as additional inputs
        # so that the 'respond' function can see them and decide which model to use
        chatbot_interface = gr.ChatInterface(
            fn=respond,  # The function that generates the text
            additional_inputs=[
                gr.Textbox(
                    value="You are a helpful AI assistant.",
                    label="System message",
                    lines=2
                ),  # system_message
                gr.Slider(minimum=1,   maximum=4096, value=512,  step=1,   label="Max new tokens"),  # max_tokens
                gr.Slider(minimum=0.1, maximum=4.0,   value=0.7,  step=0.1, label="Temperature"),      # temperature
                gr.Slider(minimum=0.1, maximum=1.0,   value=0.95, step=0.05,label="Top-P"),           # top_p
                gr.Slider(
                    minimum=-2.0,
                    maximum=2.0,
                    value=0.0,
                    step=0.1,
                    label="Frequency Penalty"
                ),  # frequency_penalty
                gr.Slider(
                    minimum=-1,
                    maximum=65535,
                    value=-1,
                    step=1,
                    label="Seed (-1 for random)"
                ),  # seed
                model_search,  # Exposed but won't be typed into during conversation,
                model_radio,
                custom_model
            ],
            chatbot=chatbot,
            title="Serverless-TextGen-Hub",
            # The fill_height ensures the chat area expands
            fill_height=True
        )

    # A new tab for "Information" about Featured Models and Parameters
    with gr.Tab("Information"):
        gr.Markdown("## Learn More About the Parameters and Models")
        
        # Accordion for "Featured Models"
        with gr.Accordion("Featured Models (WiP)", open=False):
            gr.HTML(
                """
                <p>Below is a small table of example models. In practice, you can pick from 
                thousands of available text generation models on Hugging Face. 
                <br>
                Use the <b>Filter Models</b> box under the <b>Featured Models</b> accordion 
                in the Chat tab to search by name, or enter a <b>Custom Model</b> path.</p>
                <table style="width:100%; text-align:center; margin:auto;">
                    <tr>
                        <th>Model Name</th>
                        <th>Is It Large?</th>
                        <th>Notes</th>
                    </tr>
                    <tr>
                        <td>meta-llama/Llama-3.3-70B-Instruct</td>
                        <td>Yes</td>
                        <td>Placeholder example</td>
                    </tr>
                    <tr>
                        <td>meta-llama/Llama-2-13B-chat-hf</td>
                        <td>Medium</td>
                        <td>Placeholder example</td>
                    </tr>
                    <tr>
                        <td>google/flan-t5-xxl</td>
                        <td>Yes</td>
                        <td>Placeholder example</td>
                    </tr>
                </table>
                """
            )

        # Accordion for "Parameters Overview"
        with gr.Accordion("Parameters Overview", open=False):
            gr.Markdown(
                """
                ### Max New Tokens
                Controls how many tokens can be generated in the response. A token is roughly a word or a piece of a word. If you need longer answers, increase this.

                ### Temperature
                A higher temperature makes the AI more 'creative' and random in its responses. Lower temperature keeps it more focused and deterministic.

                ### Top-P
                This is 'nucleus sampling.' It dictates the proportion of probability mass the model considers. At 1.0, it considers all words. Lower it to focus on the most likely words.

                ### Frequency Penalty
                Penalizes repeated tokens in the output. If you see a lot of repetition, increase this slightly to reduce the repetition.

                ### Seed
                If set to -1, the randomness is different each time. Setting a specific number ensures the same result each run, making responses reproducible.

                ### Custom Model
                If this field is filled, it overrides the selection from Featured Models. This way, you can try out any model on the HF Hub, e.g. 
                <code>meta-llama/Llama-2-70B-chat-hf</code> or <code>bigscience/bloom</code>.
                """
            )

print("Gradio interface initialized.")

# ------------------------------------------------------------
# Finally, we launch the app if the script is run directly.
# ------------------------------------------------------------
if __name__ == "__main__":
    print("Launching the demo application...")
    demo.launch()