File size: 4,219 Bytes
038f313
 
4c18bfc
038f313
4c18bfc
038f313
 
 
4c18bfc
038f313
 
 
 
 
 
 
 
 
 
 
 
 
3a64d68
4c18bfc
038f313
5b1509d
4c18bfc
 
 
 
 
 
 
 
 
a430d0d
4c18bfc
038f313
 
 
050af7a
5b1509d
 
4c18bfc
5b1509d
 
038f313
4c18bfc
038f313
4c18bfc
 
038f313
5b1509d
 
 
 
 
 
 
 
038f313
4c18bfc
038f313
 
4c18bfc
038f313
4c18bfc
 
 
5b1509d
4c18bfc
038f313
4c18bfc
038f313
 
4c18bfc
 
038f313
 
4c18bfc
5b1509d
 
 
038f313
 
 
3a64d68
4c18bfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
038f313
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import gradio as gr
from openai import OpenAI
import os

# Retrieve the access token from the environment variable
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")

# Initialize the OpenAI client with the Hugging Face Inference API endpoint
client = OpenAI(
    base_url="https://api-inference.huggingface.co/v1/",
    api_key=ACCESS_TOKEN,
)
print("OpenAI client initialized.")

def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
    frequency_penalty,
    seed
):
    """
    This function handles the chatbot response. It takes in:
    - message: the user's new message
    - history: the list of previous messages, each as a tuple (user_msg, assistant_msg)
    - system_message: the system prompt
    - max_tokens: the maximum number of tokens to generate in the response
    - temperature: sampling temperature
    - top_p: top-p (nucleus) sampling
    - frequency_penalty: penalize repeated tokens in the output
    - seed: a fixed seed for reproducibility; -1 will mean 'random'
    """

    print(f"Received message: {message}")
    print(f"History: {history}")
    print(f"System message: {system_message}")
    print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
    print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")

    # Convert seed to None if -1 (meaning random)
    if seed == -1:
        seed = None

    # Construct the messages array required by the API
    messages = [{"role": "system", "content": system_message}]

    # Add conversation history to the context
    for val in history:
        user_part = val[0]
        assistant_part = val[1]
        if user_part:
            messages.append({"role": "user", "content": user_part})
            print(f"Added user message to context: {user_part}")
        if assistant_part:
            messages.append({"role": "assistant", "content": assistant_part})
            print(f"Added assistant message to context: {assistant_part}")

    # Append the latest user message
    messages.append({"role": "user", "content": message})

    # Start with an empty string to build the response as tokens stream in
    response = ""
    print("Sending request to OpenAI API.")

    # Make the streaming request to the HF Inference API via openai-like client
    for message_chunk in client.chat.completions.create(
        model="meta-llama/Llama-3.3-70B-Instruct",   # You can update this to your specific model
        max_tokens=max_tokens,
        stream=True,  # Stream the response
        temperature=temperature,
        top_p=top_p,
        frequency_penalty=frequency_penalty,  # <-- NEW
        seed=seed,                             # <-- NEW
        messages=messages,
    ):
        # Extract the token text from the response chunk
        token_text = message_chunk.choices[0].delta.content
        print(f"Received token: {token_text}")
        response += token_text
        yield response

    print("Completed response generation.")

# Create a Chatbot component with a specified height
chatbot = gr.Chatbot(height=600)
print("Chatbot interface created.")

# Create the Gradio ChatInterface
# We add two new sliders for Frequency Penalty and Seed
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="", label="System message"),
        gr.Slider(minimum=1,   maximum=4096, value=512, step=1,   label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0,  value=0.7, step=0.1, label="Temperature"),
        gr.Slider(minimum=0.1, maximum=1.0,  value=0.95, step=0.05, label="Top-P"),
        gr.Slider(
            minimum=-2.0,
            maximum=2.0,
            value=0.0,
            step=0.1,
            label="Frequency Penalty"
        ),
        gr.Slider(
            minimum=-1,
            maximum=65535,  # Arbitrary upper limit for demonstration
            value=-1,
            step=1,
            label="Seed (-1 for random)"
        ),
    ],
    fill_height=True,
    chatbot=chatbot,
    theme="Nymbo/Nymbo_Theme",
)
print("Gradio interface initialized.")

if __name__ == "__main__":
    print("Launching the demo application.")
    demo.launch()