File size: 9,048 Bytes
038f313
 
4c18bfc
038f313
880ced6
 
038f313
 
4c18bfc
038f313
 
 
 
 
 
 
 
 
69b4a5f
038f313
 
 
3a64d68
d735dab
 
038f313
5b1509d
d735dab
 
 
 
 
 
 
 
 
21137c4
a430d0d
d735dab
038f313
 
69b4a5f
d735dab
21137c4
5b1509d
d735dab
5b1509d
 
038f313
d735dab
880ced6
4c18bfc
d735dab
038f313
5b1509d
 
 
 
d735dab
5b1509d
 
d735dab
038f313
d735dab
038f313
 
d735dab
038f313
d735dab
880ced6
d735dab
5b1509d
21137c4
038f313
d735dab
038f313
 
21137c4
 
038f313
 
d735dab
5b1509d
880ced6
5b1509d
038f313
 
 
3a64d68
d735dab
4c18bfc
880ced6
542c2ac
21137c4
 
 
 
 
 
 
 
 
 
 
 
 
 
d735dab
 
 
 
 
21137c4
 
 
 
 
 
d735dab
 
 
 
 
 
21137c4
 
 
d735dab
21137c4
 
 
 
 
 
 
 
 
 
 
 
 
69b4a5f
d735dab
21137c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d735dab
21137c4
 
 
d735dab
21137c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import gradio as gr
from openai import OpenAI
import os

# Retrieve the access token from the environment variable
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")

# Initialize the OpenAI client with the Hugging Face Inference API endpoint
client = OpenAI(
    base_url="https://api-inference.huggingface.co/v1/",
    api_key=ACCESS_TOKEN,
)
print("OpenAI client initialized.")

def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
    frequency_penalty,
    seed,
    model
):
    """
    This function handles the chatbot response. It takes in:
    - message: the user's new message
    - history: the list of previous messages, each as a tuple (user_msg, assistant_msg)
    - system_message: the system prompt
    - max_tokens: the maximum number of tokens to generate in the response
    - temperature: sampling temperature
    - top_p: top-p (nucleus) sampling
    - frequency_penalty: penalize repeated tokens in the output
    - seed: a fixed seed for reproducibility; -1 will mean 'random'
    - model: the selected model for text generation
    """

    print(f"Received message: {message}")
    print(f"History: {history}")
    print(f"System message: {system_message}")
    print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
    print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}, Model: {model}")

    # Convert seed to None if -1 (meaning random)
    if seed == -1:
        seed = None

    # Construct the messages array required by the API
    messages = [{"role": "system", "content": system_message}]

    # Add conversation history to the context
    for val in history:
        user_part = val[0]
        assistant_part = val[1]
        if user_part:
            messages.append({"role": "user", "content": user_part})
            print(f"Added user message to context: {user_part}")
        if assistant_part:
            messages.append({"role": "assistant", "content": assistant_part})
            print(f"Added assistant message to context: {assistant_part}")

    # Append the latest user message
    messages.append({"role": "user", "content": message})

    # Start with an empty string to build the response as tokens stream in
    response = ""
    print("Sending request to OpenAI API.")

    # Make the streaming request to the HF Inference API via openai-like client
    for message_chunk in client.chat.completions.create(
        model=model,  # Use the selected model
        max_tokens=max_tokens,
        stream=True,  # Stream the response
        temperature=temperature,
        top_p=top_p,
        frequency_penalty=frequency_penalty,
        seed=seed,
        messages=messages,
    ):
        # Extract the token text from the response chunk
        token_text = message_chunk.choices[0].delta.content
        print(f"Received token: {token_text}")
        response += token_text
        yield response

    print("Completed response generation.")

# Create a Chatbot component with a specified height
chatbot = gr.Chatbot(height=600)
print("Chatbot interface created.")

# List of featured models (placeholder models for now)
featured_models = [
    "meta-llama/Llama-3.3-70B-Instruct",
    "gpt-3.5-turbo",
    "gpt-4",
    "mistralai/Mistral-7B-Instruct-v0.1",
    "tiiuae/falcon-40b-instruct"
]

# Function to filter models based on search input
def filter_models(search_term):
    filtered_models = [m for m in featured_models if search_term.lower() in m.lower()]
    return gr.update(choices=filtered_models)

# Create the Gradio ChatInterface
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="", label="System message"),
        gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"),
        gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty"),
        gr.Slider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)"),
        gr.Radio(label="Select a model below", value="meta-llama/Llama-3.3-70B-Instruct", choices=featured_models, interactive=True, elem_id="model-radio")
    ],
    fill_height=True,
    chatbot=chatbot,
    theme="Nymbo/Nymbo_Theme",
)

# Add a "Custom Model" text box and "Featured Models" accordion
with demo:
    with gr.Tab("Model Settings"):
        with gr.Row():
            with gr.Column():
                # Textbox for custom model input
                custom_model = gr.Textbox(label="Custom Model", info="Hugging Face model path (optional)", placeholder="username/model-name")
                # Accordion for selecting featured models
                with gr.Accordion("Featured Models", open=True):
                    # Textbox for searching models
                    model_search = gr.Textbox(label="Filter Models", placeholder="Search for a featured model...", lines=1, elem_id="model-search-input")
                    # Radio buttons to select the desired model
                    model_radio = gr.Radio(label="Select a model below", value="meta-llama/Llama-3.3-70B-Instruct", choices=featured_models, interactive=True, elem_id="model-radio")
                    # Update model list when search box is used
                    model_search.change(filter_models, inputs=model_search, outputs=model_radio)

    # Add an "Information" tab with accordions
    with gr.Tab("Information"):
        with gr.Row():
            # Accordion for "Featured Models" with a table
            with gr.Accordion("Featured Models (WiP)", open=False):
                gr.HTML(
                    """
                <p><a href="https://huggingface.co/models?inference=warm&pipeline_tag=text-generation&sort=trending">See all available models</a></p>
                <table style="width:100%; text-align:center; margin:auto;">
                    <tr>
                        <th>Model Name</th>
                        <th>Typical Use Case</th>
                        <th>Notes</th>
                    </tr>
                    <tr>
                        <td>meta-llama/Llama-3.3-70B-Instruct</td>
                        <td>General-purpose instruction following</td>
                        <td>High-quality, large-scale model</td>
                    </tr>
                    <tr>
                        <td>gpt-3.5-turbo</td>
                        <td>Chat and general text generation</td>
                        <td>Fast and efficient</td>
                    </tr>
                    <tr>
                        <td>gpt-4</td>
                        <td>Advanced text generation</td>
                        <td>State-of-the-art performance</td>
                    </tr>
                    <tr>
                        <td>mistralai/Mistral-7B-Instruct-v0.1</td>
                        <td>Instruction following</td>
                        <td>Lightweight and efficient</td>
                    </tr>
                    <tr>
                        <td>tiiuae/falcon-40b-instruct</td>
                        <td>Instruction following</td>
                        <td>High-quality, large-scale model</td>
                    </tr>
                </table>
                """
                )

            # Accordion for "Parameters Overview" with markdown
            with gr.Accordion("Parameters Overview", open=False):
                gr.Markdown(
                """
                ## System Message
                ###### This is the initial prompt that sets the behavior of the model. It can be used to define the tone, style, or role of the assistant.

                ## Max Tokens
                ###### This controls the maximum length of the generated response. Higher values allow for longer responses but may take more time to generate.

                ## Temperature
                ###### This controls the randomness of the output. Lower values make the model more deterministic, while higher values make it more creative.

                ## Top-P
                ###### This controls the diversity of the output by limiting the model to the most likely tokens. Lower values make the output more focused, while higher values allow for more diversity.

                ## Frequency Penalty
                ###### This penalizes repeated tokens in the output. Higher values discourage repetition, while lower values allow for more repetitive outputs.

                ## Seed
                ###### This sets a fixed seed for reproducibility. A value of -1 means the seed is random.

                ## Model
                ###### This selects the model used for text generation. You can choose from featured models or specify a custom model.
                """
                )

print("Gradio interface initialized.")

if __name__ == "__main__":
    print("Launching the demo application.")
    demo.launch()