Spaces:
Running
Running
File size: 9,048 Bytes
038f313 4c18bfc 038f313 880ced6 038f313 4c18bfc 038f313 69b4a5f 038f313 3a64d68 d735dab 038f313 5b1509d d735dab 21137c4 a430d0d d735dab 038f313 69b4a5f d735dab 21137c4 5b1509d d735dab 5b1509d 038f313 d735dab 880ced6 4c18bfc d735dab 038f313 5b1509d d735dab 5b1509d d735dab 038f313 d735dab 038f313 d735dab 038f313 d735dab 880ced6 d735dab 5b1509d 21137c4 038f313 d735dab 038f313 21137c4 038f313 d735dab 5b1509d 880ced6 5b1509d 038f313 3a64d68 d735dab 4c18bfc 880ced6 542c2ac 21137c4 d735dab 21137c4 d735dab 21137c4 d735dab 21137c4 69b4a5f d735dab 21137c4 d735dab 21137c4 d735dab 21137c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import gradio as gr
from openai import OpenAI
import os
# Retrieve the access token from the environment variable
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")
# Initialize the OpenAI client with the Hugging Face Inference API endpoint
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1/",
api_key=ACCESS_TOKEN,
)
print("OpenAI client initialized.")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
model
):
"""
This function handles the chatbot response. It takes in:
- message: the user's new message
- history: the list of previous messages, each as a tuple (user_msg, assistant_msg)
- system_message: the system prompt
- max_tokens: the maximum number of tokens to generate in the response
- temperature: sampling temperature
- top_p: top-p (nucleus) sampling
- frequency_penalty: penalize repeated tokens in the output
- seed: a fixed seed for reproducibility; -1 will mean 'random'
- model: the selected model for text generation
"""
print(f"Received message: {message}")
print(f"History: {history}")
print(f"System message: {system_message}")
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}, Model: {model}")
# Convert seed to None if -1 (meaning random)
if seed == -1:
seed = None
# Construct the messages array required by the API
messages = [{"role": "system", "content": system_message}]
# Add conversation history to the context
for val in history:
user_part = val[0]
assistant_part = val[1]
if user_part:
messages.append({"role": "user", "content": user_part})
print(f"Added user message to context: {user_part}")
if assistant_part:
messages.append({"role": "assistant", "content": assistant_part})
print(f"Added assistant message to context: {assistant_part}")
# Append the latest user message
messages.append({"role": "user", "content": message})
# Start with an empty string to build the response as tokens stream in
response = ""
print("Sending request to OpenAI API.")
# Make the streaming request to the HF Inference API via openai-like client
for message_chunk in client.chat.completions.create(
model=model, # Use the selected model
max_tokens=max_tokens,
stream=True, # Stream the response
temperature=temperature,
top_p=top_p,
frequency_penalty=frequency_penalty,
seed=seed,
messages=messages,
):
# Extract the token text from the response chunk
token_text = message_chunk.choices[0].delta.content
print(f"Received token: {token_text}")
response += token_text
yield response
print("Completed response generation.")
# Create a Chatbot component with a specified height
chatbot = gr.Chatbot(height=600)
print("Chatbot interface created.")
# List of featured models (placeholder models for now)
featured_models = [
"meta-llama/Llama-3.3-70B-Instruct",
"gpt-3.5-turbo",
"gpt-4",
"mistralai/Mistral-7B-Instruct-v0.1",
"tiiuae/falcon-40b-instruct"
]
# Function to filter models based on search input
def filter_models(search_term):
filtered_models = [m for m in featured_models if search_term.lower() in m.lower()]
return gr.update(choices=filtered_models)
# Create the Gradio ChatInterface
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="", label="System message"),
gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"),
gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty"),
gr.Slider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)"),
gr.Radio(label="Select a model below", value="meta-llama/Llama-3.3-70B-Instruct", choices=featured_models, interactive=True, elem_id="model-radio")
],
fill_height=True,
chatbot=chatbot,
theme="Nymbo/Nymbo_Theme",
)
# Add a "Custom Model" text box and "Featured Models" accordion
with demo:
with gr.Tab("Model Settings"):
with gr.Row():
with gr.Column():
# Textbox for custom model input
custom_model = gr.Textbox(label="Custom Model", info="Hugging Face model path (optional)", placeholder="username/model-name")
# Accordion for selecting featured models
with gr.Accordion("Featured Models", open=True):
# Textbox for searching models
model_search = gr.Textbox(label="Filter Models", placeholder="Search for a featured model...", lines=1, elem_id="model-search-input")
# Radio buttons to select the desired model
model_radio = gr.Radio(label="Select a model below", value="meta-llama/Llama-3.3-70B-Instruct", choices=featured_models, interactive=True, elem_id="model-radio")
# Update model list when search box is used
model_search.change(filter_models, inputs=model_search, outputs=model_radio)
# Add an "Information" tab with accordions
with gr.Tab("Information"):
with gr.Row():
# Accordion for "Featured Models" with a table
with gr.Accordion("Featured Models (WiP)", open=False):
gr.HTML(
"""
<p><a href="https://huggingface.co/models?inference=warm&pipeline_tag=text-generation&sort=trending">See all available models</a></p>
<table style="width:100%; text-align:center; margin:auto;">
<tr>
<th>Model Name</th>
<th>Typical Use Case</th>
<th>Notes</th>
</tr>
<tr>
<td>meta-llama/Llama-3.3-70B-Instruct</td>
<td>General-purpose instruction following</td>
<td>High-quality, large-scale model</td>
</tr>
<tr>
<td>gpt-3.5-turbo</td>
<td>Chat and general text generation</td>
<td>Fast and efficient</td>
</tr>
<tr>
<td>gpt-4</td>
<td>Advanced text generation</td>
<td>State-of-the-art performance</td>
</tr>
<tr>
<td>mistralai/Mistral-7B-Instruct-v0.1</td>
<td>Instruction following</td>
<td>Lightweight and efficient</td>
</tr>
<tr>
<td>tiiuae/falcon-40b-instruct</td>
<td>Instruction following</td>
<td>High-quality, large-scale model</td>
</tr>
</table>
"""
)
# Accordion for "Parameters Overview" with markdown
with gr.Accordion("Parameters Overview", open=False):
gr.Markdown(
"""
## System Message
###### This is the initial prompt that sets the behavior of the model. It can be used to define the tone, style, or role of the assistant.
## Max Tokens
###### This controls the maximum length of the generated response. Higher values allow for longer responses but may take more time to generate.
## Temperature
###### This controls the randomness of the output. Lower values make the model more deterministic, while higher values make it more creative.
## Top-P
###### This controls the diversity of the output by limiting the model to the most likely tokens. Lower values make the output more focused, while higher values allow for more diversity.
## Frequency Penalty
###### This penalizes repeated tokens in the output. Higher values discourage repetition, while lower values allow for more repetitive outputs.
## Seed
###### This sets a fixed seed for reproducibility. A value of -1 means the seed is random.
## Model
###### This selects the model used for text generation. You can choose from featured models or specify a custom model.
"""
)
print("Gradio interface initialized.")
if __name__ == "__main__":
print("Launching the demo application.")
demo.launch() |