Nick088's picture
Add TimeStamp Granularities
caaeb6e verified
import os
import subprocess
import json
from datetime import timedelta
import tempfile
import re
import gradio as gr
import groq
from groq import Groq
# setup groq
client = Groq(api_key=os.environ.get("Groq_Api_Key"))
def handle_groq_error(e, model_name):
error_data = e.args[0]
if isinstance(error_data, str):
# Use regex to extract the JSON part of the string
json_match = re.search(r'(\{.*\})', error_data)
if json_match:
json_str = json_match.group(1)
# Ensure the JSON string is well-formed
json_str = json_str.replace("'", '"') # Replace single quotes with double quotes
error_data = json.loads(json_str)
if isinstance(e, groq.AuthenticationError):
if isinstance(error_data, dict) and 'error' in error_data and 'message' in error_data['error']:
error_message = error_data['error']['message']
raise gr.Error(error_message)
elif isinstance(e, groq.RateLimitError):
if isinstance(error_data, dict) and 'error' in error_data and 'message' in error_data['error']:
error_message = error_data['error']['message']
error_message = re.sub(r'org_[a-zA-Z0-9]+', 'org_(censored)', error_message) # censor org
raise gr.Error(error_message)
else:
raise gr.Error(f"Error during Groq API call: {e}")
# language codes for subtitle maker
LANGUAGE_CODES = {
"English": "en",
"Chinese": "zh",
"German": "de",
"Spanish": "es",
"Russian": "ru",
"Korean": "ko",
"French": "fr",
"Japanese": "ja",
"Portuguese": "pt",
"Turkish": "tr",
"Polish": "pl",
"Catalan": "ca",
"Dutch": "nl",
"Arabic": "ar",
"Swedish": "sv",
"Italian": "it",
"Indonesian": "id",
"Hindi": "hi",
"Finnish": "fi",
"Vietnamese": "vi",
"Hebrew": "he",
"Ukrainian": "uk",
"Greek": "el",
"Malay": "ms",
"Czech": "cs",
"Romanian": "ro",
"Danish": "da",
"Hungarian": "hu",
"Tamil": "ta",
"Norwegian": "no",
"Thai": "th",
"Urdu": "ur",
"Croatian": "hr",
"Bulgarian": "bg",
"Lithuanian": "lt",
"Latin": "la",
"Māori": "mi",
"Malayalam": "ml",
"Welsh": "cy",
"Slovak": "sk",
"Telugu": "te",
"Persian": "fa",
"Latvian": "lv",
"Bengali": "bn",
"Serbian": "sr",
"Azerbaijani": "az",
"Slovenian": "sl",
"Kannada": "kn",
"Estonian": "et",
"Macedonian": "mk",
"Breton": "br",
"Basque": "eu",
"Icelandic": "is",
"Armenian": "hy",
"Nepali": "ne",
"Mongolian": "mn",
"Bosnian": "bs",
"Kazakh": "kk",
"Albanian": "sq",
"Swahili": "sw",
"Galician": "gl",
"Marathi": "mr",
"Panjabi": "pa",
"Sinhala": "si",
"Khmer": "km",
"Shona": "sn",
"Yoruba": "yo",
"Somali": "so",
"Afrikaans": "af",
"Occitan": "oc",
"Georgian": "ka",
"Belarusian": "be",
"Tajik": "tg",
"Sindhi": "sd",
"Gujarati": "gu",
"Amharic": "am",
"Yiddish": "yi",
"Lao": "lo",
"Uzbek": "uz",
"Faroese": "fo",
"Haitian": "ht",
"Pashto": "ps",
"Turkmen": "tk",
"Norwegian Nynorsk": "nn",
"Maltese": "mt",
"Sanskrit": "sa",
"Luxembourgish": "lb",
"Burmese": "my",
"Tibetan": "bo",
"Tagalog": "tl",
"Malagasy": "mg",
"Assamese": "as",
"Tatar": "tt",
"Hawaiian": "haw",
"Lingala": "ln",
"Hausa": "ha",
"Bashkir": "ba",
"jw": "jw",
"Sundanese": "su",
}
# helper functions
def split_audio(input_file_path, chunk_size_mb):
chunk_size = chunk_size_mb * 1024 * 1024 # Convert MB to bytes
file_number = 1
chunks = []
with open(input_file_path, 'rb') as f:
chunk = f.read(chunk_size)
while chunk:
chunk_name = f"{os.path.splitext(input_file_path)[0]}_part{file_number:03}.mp3" # Pad file number for correct ordering
with open(chunk_name, 'wb') as chunk_file:
chunk_file.write(chunk)
chunks.append(chunk_name)
file_number += 1
chunk = f.read(chunk_size)
return chunks
def merge_audio(chunks, output_file_path):
with open("temp_list.txt", "w") as f:
for file in chunks:
f.write(f"file '{file}'\n")
try:
subprocess.run(
[
"ffmpeg",
"-f",
"concat",
"-safe", "0",
"-i",
"temp_list.txt",
"-c",
"copy",
"-y",
output_file_path
],
check=True
)
os.remove("temp_list.txt")
for chunk in chunks:
os.remove(chunk)
except subprocess.CalledProcessError as e:
raise gr.Error(f"Error during audio merging: {e}")
# Checks file extension, size, and downsamples or splits if needed.
ALLOWED_FILE_EXTENSIONS = ["mp3", "mp4", "mpeg", "mpga", "m4a", "wav", "webm"]
MAX_FILE_SIZE_MB = 25
CHUNK_SIZE_MB = 25
def check_file(input_file_path):
if not input_file_path:
raise gr.Error("Please upload an audio/video file.")
file_size_mb = os.path.getsize(input_file_path) / (1024 * 1024)
file_extension = input_file_path.split(".")[-1].lower()
if file_extension not in ALLOWED_FILE_EXTENSIONS:
raise gr.Error(f"Invalid file type (.{file_extension}). Allowed types: {', '.join(ALLOWED_FILE_EXTENSIONS)}")
if file_size_mb > MAX_FILE_SIZE_MB:
gr.Warning(
f"File size too large ({file_size_mb:.2f} MB). Attempting to downsample to 16kHz MP3 128kbps. Maximum size allowed: {MAX_FILE_SIZE_MB} MB"
)
output_file_path = os.path.splitext(input_file_path)[0] + "_downsampled.mp3"
try:
subprocess.run(
[
"ffmpeg",
"-i",
input_file_path,
"-ar",
"16000",
"-ab",
"128k",
"-ac",
"1",
"-f",
"mp3",
"-y",
output_file_path,
],
check=True
)
# Check size after downsampling
downsampled_size_mb = os.path.getsize(output_file_path) / (1024 * 1024)
if downsampled_size_mb > MAX_FILE_SIZE_MB:
gr.Warning(f"File still too large after downsampling ({downsampled_size_mb:.2f} MB). Splitting into {CHUNK_SIZE_MB} MB chunks.")
return split_audio(output_file_path, CHUNK_SIZE_MB), "split"
return output_file_path, None
except subprocess.CalledProcessError as e:
raise gr.Error(f"Error during downsampling: {e}")
return input_file_path, None
# subtitle maker
def format_time(seconds_float):
# Calculate total whole seconds and milliseconds
total_seconds = int(seconds_float)
milliseconds = int((seconds_float - total_seconds) * 1000)
# Calculate hours, minutes, and remaining seconds
hours = total_seconds // 3600
minutes = (total_seconds % 3600) // 60
seconds = total_seconds % 60
return f"{hours:02}:{minutes:02}:{seconds:02},{milliseconds:03}"
def json_to_srt(transcription_json):
srt_lines = []
for segment in transcription_json:
start_time = format_time(segment['start'])
end_time = format_time(segment['end'])
text = segment['text']
srt_line = f"{segment['id']+1}\n{start_time} --> {end_time}\n{text}\n"
srt_lines.append(srt_line)
return '\n'.join(srt_lines)
def words_json_to_srt(words_data, starting_id=0):
srt_lines = []
previous_end_time = 0.0 # Keep track of the end time of the previous word
for i, word_entry in enumerate(words_data):
# Get original start and end times
start_seconds = word_entry['start']
end_seconds = word_entry['end']
# --- Overlap Prevention Logic ---
# Ensure the start time is not before the previous word ended
start_seconds = max(start_seconds, previous_end_time)
# Ensure the end time is not before the start time (can happen with adjustments)
# And add a tiny minimum duration (e.g., 50ms) if start and end are identical,
# otherwise the subtitle might flash too quickly or be ignored by players.
min_duration = 0.050 # 50 milliseconds
if end_seconds <= start_seconds:
end_seconds = start_seconds + min_duration
# --- End of Overlap Prevention ---
# Format the potentially adjusted times
start_time_fmt = format_time(start_seconds)
end_time_fmt = format_time(end_seconds)
text = word_entry['word']
srt_id = starting_id + i + 1
srt_line = f"{srt_id}\n{start_time_fmt} --> {end_time_fmt}\n{text}\n"
srt_lines.append(srt_line)
# Update previous_end_time for the next iteration using the *adjusted* end time
previous_end_time = end_seconds
return '\n'.join(srt_lines)
def generate_subtitles(input_file, prompt, timestamp_granularities_str, language, auto_detect_language, model, include_video, font_selection, font_file, font_color, font_size, outline_thickness, outline_color):
input_file_path = input_file
processed_path, split_status = check_file(input_file_path)
full_srt_content = "" # Used for accumulating SRT content string for split files
srt_chunks_paths = [] # Used to store paths of individual SRT chunk files for merging
video_chunks = [] # Used to store paths of video chunks with embedded subs
total_duration = 0 # Cumulative duration for timestamp adjustment in split files
srt_entry_offset = 0 # Cumulative SRT entry count (words or segments) for ID adjustment
# transforms the gradio dropdown choice str to a python list needed for the groq api
timestamp_granularities_list = [gran.strip() for gran in timestamp_granularities_str.split(',') if gran.strip()]
# Determine primary granularity for logic (prefer word if both specified, else segment)
primary_granularity = "word" if "word" in timestamp_granularities_list else "segment"
# handling splitted files or single ones
if split_status == "split":
for i, chunk_path in enumerate(processed_path):
chunk_srt_content = "" # SRT content for the current chunk
temp_srt_path = f"{os.path.splitext(chunk_path)[0]}.srt" # Path for this chunk's SRT file
try:
gr.Info(f"Processing chunk {i+1}/{len(processed_path)}...")
with open(chunk_path, "rb") as file:
transcription_json_response = client.audio.transcriptions.create(
file=(os.path.basename(chunk_path), file.read()),
model=model,
prompt=prompt,
response_format="verbose_json",
timestamp_granularities=timestamp_granularities_list,
language=None if auto_detect_language else language,
temperature=0.0,
)
if primary_granularity == "word":
word_data = transcription_json_response.words
if word_data:
# Adjust timestamps BEFORE generating SRT
adjusted_word_data = []
for entry in word_data:
adjusted_entry = entry.copy()
adjusted_entry['start'] += total_duration
adjusted_entry['end'] += total_duration
adjusted_word_data.append(adjusted_entry)
# Generate SRT using adjusted data and current offset
chunk_srt_content = words_json_to_srt(adjusted_word_data, srt_entry_offset)
# Update offsets for the *next* chunk
total_duration = adjusted_word_data[-1]['end'] # Use adjusted end time
srt_entry_offset += len(word_data) # Increment by number of words in this chunk
else:
gr.Warning(f"API returned no word timestamps for chunk {i+1}.")
elif primary_granularity == "segment":
segment_data = transcription_json_response.segments
if segment_data:
# Adjust timestamps and IDs BEFORE generating SRT
adjusted_segment_data = []
max_original_id = -1
for entry in segment_data:
adjusted_entry = entry.copy()
adjusted_entry['start'] += total_duration
adjusted_entry['end'] += total_duration
max_original_id = max(max_original_id, adjusted_entry['id']) # Track max original ID for offset calc
adjusted_entry['id'] += srt_entry_offset # Adjust ID for SRT generation
adjusted_segment_data.append(adjusted_entry)
# Generate SRT using adjusted data
chunk_srt_content = json_to_srt(adjusted_segment_data) # json_to_srt uses the 'id' field directly
# Update offsets for the *next* chunk
total_duration = adjusted_segment_data[-1]['end'] # Use adjusted end time
srt_entry_offset += (max_original_id + 1) # Increment by number of segments in this chunk (based on original IDs)
else:
gr.Warning(f"API returned no segment timestamps for chunk {i+1}.")
else:
# This case should ideally not be reached due to dropdown default/logic
gr.Warning(f"Invalid timestamp granularity for chunk {i+1}. Skipping SRT generation for this chunk.")
# Write and store path for this chunk's SRT file if content exists
if chunk_srt_content:
with open(temp_srt_path, "w", encoding="utf-8") as temp_srt_file:
temp_srt_file.write(chunk_srt_content)
srt_chunks_paths.append(temp_srt_path)
full_srt_content += chunk_srt_content # Append to the full content string as well
# Video embedding for the chunk
if include_video and input_file_path.lower().endswith((".mp4", ".webm")):
try:
output_video_chunk_path = chunk_path.replace(os.path.splitext(chunk_path)[1], "_with_subs" + os.path.splitext(chunk_path)[1])
# Handle font selection
font_name = None
font_dir = None
if font_selection == "Custom Font File" and font_file:
font_name = os.path.splitext(os.path.basename(font_file.name))[0]
font_dir = os.path.dirname(font_file.name)
elif font_selection == "Custom Font File" and not font_file:
gr.Warning(f"Custom Font File selected but none uploaded. Using default font for chunk {i+1}.")
# FFmpeg command for the chunk
subprocess.run(
[
"ffmpeg", "-y", "-i", chunk_path,
"-vf", f"subtitles={temp_srt_path}:fontsdir={font_dir}:force_style='FontName={font_name},Fontsize={int(font_size)},PrimaryColour=&H{font_color[1:]}&,OutlineColour=&H{outline_color[1:]}&,BorderStyle={int(outline_thickness)},Outline=1'",
"-preset", "fast", output_video_chunk_path,
], check=True,
)
video_chunks.append(output_video_chunk_path)
except subprocess.CalledProcessError as e:
# Warn but continue processing other chunks
gr.Warning(f"Error adding subtitles to video chunk {i+1}: {e}. Skipping video for this chunk.")
except Exception as e: # Catch other potential errors during font handling etc.
gr.Warning(f"Error preparing subtitle style for video chunk {i+1}: {e}. Skipping video for this chunk.")
elif include_video and i == 0: # Show warning only once for non-video input
gr.Warning(f"Include Video checked, but input isn't MP4/WebM. Only SRT will be generated.", duration=15)
except groq.AuthenticationError as e:
handle_groq_error(e, model) # This will raise gr.Error and stop execution
except groq.RateLimitError as e:
handle_groq_error(e, model) # This will raise gr.Error and stop execution
except Exception as e:
gr.Warning(f"Error processing chunk {i+1}: {e}. Skipping this chunk.")
# Remove potentially incomplete SRT for this chunk if it exists
if os.path.exists(temp_srt_path):
try: os.remove(temp_srt_path)
except: pass
continue # Move to the next chunk
# After processing all chunks
final_srt_path = None
final_video_path = None
# Merge SRT chunks if any were created
if srt_chunks_paths:
final_srt_path = os.path.splitext(input_file_path)[0] + "_final.srt"
gr.Info("Merging SRT chunks...")
with open(final_srt_path, 'w', encoding="utf-8") as outfile:
# Use the full_srt_content string which ensures correct order and content
outfile.write(full_srt_content)
# Clean up individual srt chunks paths
for srt_chunk_file in srt_chunks_paths:
try: os.remove(srt_chunk_file)
except: pass
# Clean up intermediate audio chunks used for transcription
for chunk in processed_path:
try: os.remove(chunk)
except: pass
else:
gr.Warning("No SRT content was generated from any chunk.")
# Merge video chunks if any were created
if video_chunks:
# Check if number of video chunks matches expected number based on successful SRT generation
if len(video_chunks) != len(srt_chunks_paths):
gr.Warning("Mismatch between successful SRT chunks and video chunks created. Video merge might be incomplete.")
final_video_path = os.path.splitext(input_file_path)[0] + '_merged_video_with_subs.mp4' # More descriptive name
gr.Info("Merging video chunks...")
try:
merge_audio(video_chunks, final_video_path) # Re-using merge_audio logic for video files
# video_chunks are removed inside merge_audio if successful
except Exception as e:
gr.Error(f"Failed to merge video chunks: {e}")
final_video_path = None # Indicate failure
return final_srt_path, final_video_path
else: # Single file processing (no splitting)
final_srt_path = None
final_video_path = None
temp_srt_path = os.path.splitext(processed_path)[0] + ".srt" # Use processed_path for naming
try:
gr.Info("Processing file...")
with open(processed_path, "rb") as file:
transcription_json_response = client.audio.transcriptions.create(
file=(os.path.basename(processed_path), file.read()),
model=model,
prompt=prompt,
response_format="verbose_json",
timestamp_granularities=timestamp_granularities_list,
language=None if auto_detect_language else language,
temperature=0.0,
)
srt_content = "" # Initialize
if primary_granularity == "word":
word_data = transcription_json_response.words
if word_data:
srt_content = words_json_to_srt(word_data, 0) # Start IDs from 0
else:
gr.Warning("API returned no word timestamps.")
elif primary_granularity == "segment":
segment_data = transcription_json_response.segments
if segment_data:
# No need to adjust IDs/timestamps for single file
srt_content = json_to_srt(segment_data)
else:
gr.Warning("API returned no segment timestamps.")
else:
# Should not happen
gr.Warning("Invalid timestamp granularity selected. Skipping SRT generation.")
# Write SRT file if content exists
if srt_content:
with open(temp_srt_path, "w", encoding="utf-8") as temp_srt_file:
temp_srt_file.write(srt_content)
final_srt_path = temp_srt_path # Set the final path
# Video embedding logic
if include_video and input_file_path.lower().endswith((".mp4", ".webm")):
try:
output_video_path = processed_path.replace(
os.path.splitext(processed_path)[1], "_with_subs" + os.path.splitext(processed_path)[1]
)
# Handle font selection
font_name = None
font_dir = None
if font_selection == "Custom Font File" and font_file:
font_name = os.path.splitext(os.path.basename(font_file.name))[0]
font_dir = os.path.dirname(font_file.name)
elif font_selection == "Custom Font File" and not font_file:
gr.Warning(f"Custom Font File selected but none uploaded. Using default font.")
# FFmpeg command
gr.Info("Adding subtitles to video...")
subprocess.run(
[
"ffmpeg", "-y", "-i", processed_path, # Use processed_path as input
"-vf", f"subtitles={temp_srt_path}:fontsdir={font_dir}:force_style='FontName={font_name},Fontsize={int(font_size)},PrimaryColour=&H{font_color[1:]}&,OutlineColour=&H{outline_color[1:]}&,BorderStyle={int(outline_thickness)},Outline=1'",
"-preset", "fast", output_video_path,
], check=True,
)
final_video_path = output_video_path
except subprocess.CalledProcessError as e:
gr.Error(f"Error during subtitle addition: {e}")
# Keep SRT file, but no video output
final_video_path = None
except Exception as e:
gr.Error(f"Error preparing subtitle style for video: {e}")
final_video_path = None
elif include_video:
# Warning for non-video input shown once
gr.Warning(f"Include Video checked, but input isn't MP4/WebM. Only SRT will be generated.", duration=15)
# Clean up downsampled file if it was created and different from original input
if processed_path != input_file_path and os.path.exists(processed_path):
try: os.remove(processed_path)
except: pass
return final_srt_path, final_video_path # Return paths (video might be None)
else: # No SRT content generated
gr.Warning("No SRT content could be generated.")
# Clean up downsampled file if created
if processed_path != input_file_path and os.path.exists(processed_path):
try: os.remove(processed_path)
except: pass
return None, None # Return None for both outputs
except groq.AuthenticationError as e:
handle_groq_error(e, model)
except groq.RateLimitError as e:
handle_groq_error(e, model)
except Exception as e: # Catch any other error during single file processing
# Clean up downsampled file if created
if processed_path != input_file_path and os.path.exists(processed_path):
try: os.remove(processed_path)
except: pass
# Clean up potentially created empty SRT
if os.path.exists(temp_srt_path):
try: os.remove(temp_srt_path)
except: pass
raise gr.Error(f"An unexpected error occurred: {e}")
theme = gr.themes.Soft(
primary_hue="sky",
secondary_hue="blue",
neutral_hue="neutral"
).set(
border_color_primary='*neutral_300',
block_border_width='1px',
block_border_width_dark='1px',
block_title_border_color='*secondary_100',
block_title_border_color_dark='*secondary_200',
input_background_fill_focus='*secondary_300',
input_border_color='*border_color_primary',
input_border_color_focus='*secondary_500',
input_border_width='1px',
input_border_width_dark='1px',
slider_color='*secondary_500',
slider_color_dark='*secondary_600'
)
css = """
.gradio-container{max-width: 1400px !important}
h1{text-align:center}
.extra-option {
display: none;
}
.extra-option.visible {
display: block;
}
"""
with gr.Blocks(theme=theme, css=css) as interface:
gr.Markdown(
"""
# Fast Subtitle Maker
Inference by Groq API
If you are having API Rate Limit issues, you can retry later based on the [rate limits](https://console.groq.com/docs/rate-limits) or <a href="https://huggingface.co/spaces/Nick088/Fast-Subtitle-Maker?duplicate=true" style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank"> <img style="margin-bottom: 0em;display: inline;margin-top: -.25em;" src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a> with <a href=https://console.groq.com/keys>your own API Key</a> </p>
Hugging Face Space by [Nick088](https://linktr.ee/Nick088)
<br> <a href="https://discord.gg/AQsmBmgEPy"> <img src="https://img.shields.io/discord/1198701940511617164?color=%23738ADB&label=Discord&style=for-the-badge" alt="Discord"> </a>
"""
)
with gr.Column():
# Input components
input_file = gr.File(label="Upload Audio/Video", file_types=[f".{ext}" for ext in ALLOWED_FILE_EXTENSIONS], visible=True)
# Model and options
model_choice_subtitles = gr.Dropdown(choices=["whisper-large-v3", "whisper-large-v3-turbo", "distil-whisper-large-v3-en"], value="whisper-large-v3-turbo", label="Audio Speech Recogition (ASR) Model", info="'whisper-large-v3' = Multilingual high quality, 'whisper-large-v3-turbo' = Multilingual fast with minimal impact on quality, good balance, 'distil-whisper-large-v3-en' = English only, fastest with also slight impact on quality")
transcribe_prompt_subtitles = gr.Textbox(label="Prompt (Optional)", info="Specify any context or spelling corrections.")
timestamp_granularities_str = gr.Dropdown(choices=["word", "segment"], value="word", label="Timestamp Granularities", info="The level of detail of time measurement in the timestamps.")
with gr.Row():
language_subtitles = gr.Dropdown(choices=[(lang, code) for lang, code in LANGUAGE_CODES.items()], value="en", label="Language")
auto_detect_language_subtitles = gr.Checkbox(label="Auto Detect Language")
# Generate button
transcribe_button_subtitles = gr.Button("Generate Subtitles")
# Output and settings
include_video_option = gr.Checkbox(label="Include Video with Subtitles")
gr.Markdown("The SubText Rip (SRT) File, contains the subtitles, you can upload this to any video editing app for adding the subs to your video and also modify/stilyze them")
srt_output = gr.File(label="SRT Output File")
show_subtitle_settings = gr.Checkbox(label="Show Subtitle Video Settings", visible=False)
with gr.Row(visible=False) as subtitle_video_settings:
with gr.Column():
font_selection = gr.Radio(["Arial", "Custom Font File"], value="Arial", label="Font Selection", info="Select what font to use")
font_file = gr.File(label="Upload Font File (TTF or OTF)", file_types=[".ttf", ".otf"], visible=False)
font_color = gr.ColorPicker(label="Font Color", value="#FFFFFF")
font_size = gr.Slider(label="Font Size (in pixels)", minimum=10, maximum=60, value=24, step=1)
outline_thickness = gr.Slider(label="Outline Thickness", minimum=0, maximum=5, value=1, step=1)
outline_color = gr.ColorPicker(label="Outline Color", value="#000000")
video_output = gr.Video(label="Output Video with Subtitles", visible=False)
# Event bindings
# show video output
include_video_option.change(lambda include_video: gr.update(visible=include_video), inputs=[include_video_option], outputs=[video_output])
# show video output subs settings checkbox
include_video_option.change(lambda include_video: gr.update(visible=include_video), inputs=[include_video_option], outputs=[show_subtitle_settings])
# show video output subs settings
show_subtitle_settings.change(lambda show: gr.update(visible=show), inputs=[show_subtitle_settings], outputs=[subtitle_video_settings])
# uncheck show subtitle settings checkbox if include video is unchecked (to make the output subs settings not visible)
show_subtitle_settings.change(lambda show, include_video: gr.update(visible=show and include_video), inputs=[show_subtitle_settings, include_video_option], outputs=[show_subtitle_settings])
# show custom font file selection
font_selection.change(lambda font_selection: gr.update(visible=font_selection == "Custom Font File"), inputs=[font_selection], outputs=[font_file])
# Update language dropdown based on model selection
def update_language_options(model):
if model == "distil-whisper-large-v3-en":
return gr.update(choices=[("English", "en")], value="en", interactive=False)
else:
return gr.update(choices=[(lang, code) for lang, code in LANGUAGE_CODES.items()], value="en", interactive=True)
model_choice_subtitles.change(fn=update_language_options, inputs=[model_choice_subtitles], outputs=[language_subtitles])
# Modified generate subtitles event
transcribe_button_subtitles.click(
fn=generate_subtitles,
inputs=[
input_file,
transcribe_prompt_subtitles,
timestamp_granularities_str,
language_subtitles,
auto_detect_language_subtitles,
model_choice_subtitles,
include_video_option,
font_selection,
font_file,
font_color,
font_size,
outline_thickness,
outline_color,
],
outputs=[srt_output, video_output],
)
interface.launch(share=True)