Spaces:
Running
Running
import os | |
import subprocess | |
import json | |
from datetime import timedelta | |
import tempfile | |
import re | |
import gradio as gr | |
import groq | |
from groq import Groq | |
# setup groq | |
client = Groq(api_key=os.environ.get("Groq_Api_Key")) | |
def handle_groq_error(e, model_name): | |
error_data = e.args[0] | |
if isinstance(error_data, str): | |
# Use regex to extract the JSON part of the string | |
json_match = re.search(r'(\{.*\})', error_data) | |
if json_match: | |
json_str = json_match.group(1) | |
# Ensure the JSON string is well-formed | |
json_str = json_str.replace("'", '"') # Replace single quotes with double quotes | |
error_data = json.loads(json_str) | |
if isinstance(e, groq.AuthenticationError): | |
if isinstance(error_data, dict) and 'error' in error_data and 'message' in error_data['error']: | |
error_message = error_data['error']['message'] | |
raise gr.Error(error_message) | |
elif isinstance(e, groq.RateLimitError): | |
if isinstance(error_data, dict) and 'error' in error_data and 'message' in error_data['error']: | |
error_message = error_data['error']['message'] | |
error_message = re.sub(r'org_[a-zA-Z0-9]+', 'org_(censored)', error_message) # censor org | |
raise gr.Error(error_message) | |
else: | |
raise gr.Error(f"Error during Groq API call: {e}") | |
# language codes for subtitle maker | |
LANGUAGE_CODES = { | |
"English": "en", | |
"Chinese": "zh", | |
"German": "de", | |
"Spanish": "es", | |
"Russian": "ru", | |
"Korean": "ko", | |
"French": "fr", | |
"Japanese": "ja", | |
"Portuguese": "pt", | |
"Turkish": "tr", | |
"Polish": "pl", | |
"Catalan": "ca", | |
"Dutch": "nl", | |
"Arabic": "ar", | |
"Swedish": "sv", | |
"Italian": "it", | |
"Indonesian": "id", | |
"Hindi": "hi", | |
"Finnish": "fi", | |
"Vietnamese": "vi", | |
"Hebrew": "he", | |
"Ukrainian": "uk", | |
"Greek": "el", | |
"Malay": "ms", | |
"Czech": "cs", | |
"Romanian": "ro", | |
"Danish": "da", | |
"Hungarian": "hu", | |
"Tamil": "ta", | |
"Norwegian": "no", | |
"Thai": "th", | |
"Urdu": "ur", | |
"Croatian": "hr", | |
"Bulgarian": "bg", | |
"Lithuanian": "lt", | |
"Latin": "la", | |
"Māori": "mi", | |
"Malayalam": "ml", | |
"Welsh": "cy", | |
"Slovak": "sk", | |
"Telugu": "te", | |
"Persian": "fa", | |
"Latvian": "lv", | |
"Bengali": "bn", | |
"Serbian": "sr", | |
"Azerbaijani": "az", | |
"Slovenian": "sl", | |
"Kannada": "kn", | |
"Estonian": "et", | |
"Macedonian": "mk", | |
"Breton": "br", | |
"Basque": "eu", | |
"Icelandic": "is", | |
"Armenian": "hy", | |
"Nepali": "ne", | |
"Mongolian": "mn", | |
"Bosnian": "bs", | |
"Kazakh": "kk", | |
"Albanian": "sq", | |
"Swahili": "sw", | |
"Galician": "gl", | |
"Marathi": "mr", | |
"Panjabi": "pa", | |
"Sinhala": "si", | |
"Khmer": "km", | |
"Shona": "sn", | |
"Yoruba": "yo", | |
"Somali": "so", | |
"Afrikaans": "af", | |
"Occitan": "oc", | |
"Georgian": "ka", | |
"Belarusian": "be", | |
"Tajik": "tg", | |
"Sindhi": "sd", | |
"Gujarati": "gu", | |
"Amharic": "am", | |
"Yiddish": "yi", | |
"Lao": "lo", | |
"Uzbek": "uz", | |
"Faroese": "fo", | |
"Haitian": "ht", | |
"Pashto": "ps", | |
"Turkmen": "tk", | |
"Norwegian Nynorsk": "nn", | |
"Maltese": "mt", | |
"Sanskrit": "sa", | |
"Luxembourgish": "lb", | |
"Burmese": "my", | |
"Tibetan": "bo", | |
"Tagalog": "tl", | |
"Malagasy": "mg", | |
"Assamese": "as", | |
"Tatar": "tt", | |
"Hawaiian": "haw", | |
"Lingala": "ln", | |
"Hausa": "ha", | |
"Bashkir": "ba", | |
"jw": "jw", | |
"Sundanese": "su", | |
} | |
# helper functions | |
def split_audio(input_file_path, chunk_size_mb): | |
chunk_size = chunk_size_mb * 1024 * 1024 # Convert MB to bytes | |
file_number = 1 | |
chunks = [] | |
with open(input_file_path, 'rb') as f: | |
chunk = f.read(chunk_size) | |
while chunk: | |
chunk_name = f"{os.path.splitext(input_file_path)[0]}_part{file_number:03}.mp3" # Pad file number for correct ordering | |
with open(chunk_name, 'wb') as chunk_file: | |
chunk_file.write(chunk) | |
chunks.append(chunk_name) | |
file_number += 1 | |
chunk = f.read(chunk_size) | |
return chunks | |
def merge_audio(chunks, output_file_path): | |
with open("temp_list.txt", "w") as f: | |
for file in chunks: | |
f.write(f"file '{file}'\n") | |
try: | |
subprocess.run( | |
[ | |
"ffmpeg", | |
"-f", | |
"concat", | |
"-safe", "0", | |
"-i", | |
"temp_list.txt", | |
"-c", | |
"copy", | |
"-y", | |
output_file_path | |
], | |
check=True | |
) | |
os.remove("temp_list.txt") | |
for chunk in chunks: | |
os.remove(chunk) | |
except subprocess.CalledProcessError as e: | |
raise gr.Error(f"Error during audio merging: {e}") | |
# Checks file extension, size, and downsamples or splits if needed. | |
ALLOWED_FILE_EXTENSIONS = ["mp3", "mp4", "mpeg", "mpga", "m4a", "wav", "webm"] | |
MAX_FILE_SIZE_MB = 25 | |
CHUNK_SIZE_MB = 25 | |
def check_file(input_file_path): | |
if not input_file_path: | |
raise gr.Error("Please upload an audio/video file.") | |
file_size_mb = os.path.getsize(input_file_path) / (1024 * 1024) | |
file_extension = input_file_path.split(".")[-1].lower() | |
if file_extension not in ALLOWED_FILE_EXTENSIONS: | |
raise gr.Error(f"Invalid file type (.{file_extension}). Allowed types: {', '.join(ALLOWED_FILE_EXTENSIONS)}") | |
if file_size_mb > MAX_FILE_SIZE_MB: | |
gr.Warning( | |
f"File size too large ({file_size_mb:.2f} MB). Attempting to downsample to 16kHz MP3 128kbps. Maximum size allowed: {MAX_FILE_SIZE_MB} MB" | |
) | |
output_file_path = os.path.splitext(input_file_path)[0] + "_downsampled.mp3" | |
try: | |
subprocess.run( | |
[ | |
"ffmpeg", | |
"-i", | |
input_file_path, | |
"-ar", | |
"16000", | |
"-ab", | |
"128k", | |
"-ac", | |
"1", | |
"-f", | |
"mp3", | |
"-y", | |
output_file_path, | |
], | |
check=True | |
) | |
# Check size after downsampling | |
downsampled_size_mb = os.path.getsize(output_file_path) / (1024 * 1024) | |
if downsampled_size_mb > MAX_FILE_SIZE_MB: | |
gr.Warning(f"File still too large after downsampling ({downsampled_size_mb:.2f} MB). Splitting into {CHUNK_SIZE_MB} MB chunks.") | |
return split_audio(output_file_path, CHUNK_SIZE_MB), "split" | |
return output_file_path, None | |
except subprocess.CalledProcessError as e: | |
raise gr.Error(f"Error during downsampling: {e}") | |
return input_file_path, None | |
# subtitle maker | |
def format_time(seconds_float): | |
# Calculate total whole seconds and milliseconds | |
total_seconds = int(seconds_float) | |
milliseconds = int((seconds_float - total_seconds) * 1000) | |
# Calculate hours, minutes, and remaining seconds | |
hours = total_seconds // 3600 | |
minutes = (total_seconds % 3600) // 60 | |
seconds = total_seconds % 60 | |
return f"{hours:02}:{minutes:02}:{seconds:02},{milliseconds:03}" | |
def json_to_srt(transcription_json): | |
srt_lines = [] | |
for segment in transcription_json: | |
start_time = format_time(segment['start']) | |
end_time = format_time(segment['end']) | |
text = segment['text'] | |
srt_line = f"{segment['id']+1}\n{start_time} --> {end_time}\n{text}\n" | |
srt_lines.append(srt_line) | |
return '\n'.join(srt_lines) | |
def words_json_to_srt(words_data, starting_id=0): | |
srt_lines = [] | |
previous_end_time = 0.0 # Keep track of the end time of the previous word | |
for i, word_entry in enumerate(words_data): | |
# Get original start and end times | |
start_seconds = word_entry['start'] | |
end_seconds = word_entry['end'] | |
# --- Overlap Prevention Logic --- | |
# Ensure the start time is not before the previous word ended | |
start_seconds = max(start_seconds, previous_end_time) | |
# Ensure the end time is not before the start time (can happen with adjustments) | |
# And add a tiny minimum duration (e.g., 50ms) if start and end are identical, | |
# otherwise the subtitle might flash too quickly or be ignored by players. | |
min_duration = 0.050 # 50 milliseconds | |
if end_seconds <= start_seconds: | |
end_seconds = start_seconds + min_duration | |
# --- End of Overlap Prevention --- | |
# Format the potentially adjusted times | |
start_time_fmt = format_time(start_seconds) | |
end_time_fmt = format_time(end_seconds) | |
text = word_entry['word'] | |
srt_id = starting_id + i + 1 | |
srt_line = f"{srt_id}\n{start_time_fmt} --> {end_time_fmt}\n{text}\n" | |
srt_lines.append(srt_line) | |
# Update previous_end_time for the next iteration using the *adjusted* end time | |
previous_end_time = end_seconds | |
return '\n'.join(srt_lines) | |
def generate_subtitles(input_file, prompt, timestamp_granularities_str, language, auto_detect_language, model, include_video, font_selection, font_file, font_color, font_size, outline_thickness, outline_color): | |
input_file_path = input_file | |
processed_path, split_status = check_file(input_file_path) | |
full_srt_content = "" # Used for accumulating SRT content string for split files | |
srt_chunks_paths = [] # Used to store paths of individual SRT chunk files for merging | |
video_chunks = [] # Used to store paths of video chunks with embedded subs | |
total_duration = 0 # Cumulative duration for timestamp adjustment in split files | |
srt_entry_offset = 0 # Cumulative SRT entry count (words or segments) for ID adjustment | |
# transforms the gradio dropdown choice str to a python list needed for the groq api | |
timestamp_granularities_list = [gran.strip() for gran in timestamp_granularities_str.split(',') if gran.strip()] | |
# Determine primary granularity for logic (prefer word if both specified, else segment) | |
primary_granularity = "word" if "word" in timestamp_granularities_list else "segment" | |
# handling splitted files or single ones | |
if split_status == "split": | |
for i, chunk_path in enumerate(processed_path): | |
chunk_srt_content = "" # SRT content for the current chunk | |
temp_srt_path = f"{os.path.splitext(chunk_path)[0]}.srt" # Path for this chunk's SRT file | |
try: | |
gr.Info(f"Processing chunk {i+1}/{len(processed_path)}...") | |
with open(chunk_path, "rb") as file: | |
transcription_json_response = client.audio.transcriptions.create( | |
file=(os.path.basename(chunk_path), file.read()), | |
model=model, | |
prompt=prompt, | |
response_format="verbose_json", | |
timestamp_granularities=timestamp_granularities_list, | |
language=None if auto_detect_language else language, | |
temperature=0.0, | |
) | |
if primary_granularity == "word": | |
word_data = transcription_json_response.words | |
if word_data: | |
# Adjust timestamps BEFORE generating SRT | |
adjusted_word_data = [] | |
for entry in word_data: | |
adjusted_entry = entry.copy() | |
adjusted_entry['start'] += total_duration | |
adjusted_entry['end'] += total_duration | |
adjusted_word_data.append(adjusted_entry) | |
# Generate SRT using adjusted data and current offset | |
chunk_srt_content = words_json_to_srt(adjusted_word_data, srt_entry_offset) | |
# Update offsets for the *next* chunk | |
total_duration = adjusted_word_data[-1]['end'] # Use adjusted end time | |
srt_entry_offset += len(word_data) # Increment by number of words in this chunk | |
else: | |
gr.Warning(f"API returned no word timestamps for chunk {i+1}.") | |
elif primary_granularity == "segment": | |
segment_data = transcription_json_response.segments | |
if segment_data: | |
# Adjust timestamps and IDs BEFORE generating SRT | |
adjusted_segment_data = [] | |
max_original_id = -1 | |
for entry in segment_data: | |
adjusted_entry = entry.copy() | |
adjusted_entry['start'] += total_duration | |
adjusted_entry['end'] += total_duration | |
max_original_id = max(max_original_id, adjusted_entry['id']) # Track max original ID for offset calc | |
adjusted_entry['id'] += srt_entry_offset # Adjust ID for SRT generation | |
adjusted_segment_data.append(adjusted_entry) | |
# Generate SRT using adjusted data | |
chunk_srt_content = json_to_srt(adjusted_segment_data) # json_to_srt uses the 'id' field directly | |
# Update offsets for the *next* chunk | |
total_duration = adjusted_segment_data[-1]['end'] # Use adjusted end time | |
srt_entry_offset += (max_original_id + 1) # Increment by number of segments in this chunk (based on original IDs) | |
else: | |
gr.Warning(f"API returned no segment timestamps for chunk {i+1}.") | |
else: | |
# This case should ideally not be reached due to dropdown default/logic | |
gr.Warning(f"Invalid timestamp granularity for chunk {i+1}. Skipping SRT generation for this chunk.") | |
# Write and store path for this chunk's SRT file if content exists | |
if chunk_srt_content: | |
with open(temp_srt_path, "w", encoding="utf-8") as temp_srt_file: | |
temp_srt_file.write(chunk_srt_content) | |
srt_chunks_paths.append(temp_srt_path) | |
full_srt_content += chunk_srt_content # Append to the full content string as well | |
# Video embedding for the chunk | |
if include_video and input_file_path.lower().endswith((".mp4", ".webm")): | |
try: | |
output_video_chunk_path = chunk_path.replace(os.path.splitext(chunk_path)[1], "_with_subs" + os.path.splitext(chunk_path)[1]) | |
# Handle font selection | |
font_name = None | |
font_dir = None | |
if font_selection == "Custom Font File" and font_file: | |
font_name = os.path.splitext(os.path.basename(font_file.name))[0] | |
font_dir = os.path.dirname(font_file.name) | |
elif font_selection == "Custom Font File" and not font_file: | |
gr.Warning(f"Custom Font File selected but none uploaded. Using default font for chunk {i+1}.") | |
# FFmpeg command for the chunk | |
subprocess.run( | |
[ | |
"ffmpeg", "-y", "-i", chunk_path, | |
"-vf", f"subtitles={temp_srt_path}:fontsdir={font_dir}:force_style='FontName={font_name},Fontsize={int(font_size)},PrimaryColour=&H{font_color[1:]}&,OutlineColour=&H{outline_color[1:]}&,BorderStyle={int(outline_thickness)},Outline=1'", | |
"-preset", "fast", output_video_chunk_path, | |
], check=True, | |
) | |
video_chunks.append(output_video_chunk_path) | |
except subprocess.CalledProcessError as e: | |
# Warn but continue processing other chunks | |
gr.Warning(f"Error adding subtitles to video chunk {i+1}: {e}. Skipping video for this chunk.") | |
except Exception as e: # Catch other potential errors during font handling etc. | |
gr.Warning(f"Error preparing subtitle style for video chunk {i+1}: {e}. Skipping video for this chunk.") | |
elif include_video and i == 0: # Show warning only once for non-video input | |
gr.Warning(f"Include Video checked, but input isn't MP4/WebM. Only SRT will be generated.", duration=15) | |
except groq.AuthenticationError as e: | |
handle_groq_error(e, model) # This will raise gr.Error and stop execution | |
except groq.RateLimitError as e: | |
handle_groq_error(e, model) # This will raise gr.Error and stop execution | |
except Exception as e: | |
gr.Warning(f"Error processing chunk {i+1}: {e}. Skipping this chunk.") | |
# Remove potentially incomplete SRT for this chunk if it exists | |
if os.path.exists(temp_srt_path): | |
try: os.remove(temp_srt_path) | |
except: pass | |
continue # Move to the next chunk | |
# After processing all chunks | |
final_srt_path = None | |
final_video_path = None | |
# Merge SRT chunks if any were created | |
if srt_chunks_paths: | |
final_srt_path = os.path.splitext(input_file_path)[0] + "_final.srt" | |
gr.Info("Merging SRT chunks...") | |
with open(final_srt_path, 'w', encoding="utf-8") as outfile: | |
# Use the full_srt_content string which ensures correct order and content | |
outfile.write(full_srt_content) | |
# Clean up individual srt chunks paths | |
for srt_chunk_file in srt_chunks_paths: | |
try: os.remove(srt_chunk_file) | |
except: pass | |
# Clean up intermediate audio chunks used for transcription | |
for chunk in processed_path: | |
try: os.remove(chunk) | |
except: pass | |
else: | |
gr.Warning("No SRT content was generated from any chunk.") | |
# Merge video chunks if any were created | |
if video_chunks: | |
# Check if number of video chunks matches expected number based on successful SRT generation | |
if len(video_chunks) != len(srt_chunks_paths): | |
gr.Warning("Mismatch between successful SRT chunks and video chunks created. Video merge might be incomplete.") | |
final_video_path = os.path.splitext(input_file_path)[0] + '_merged_video_with_subs.mp4' # More descriptive name | |
gr.Info("Merging video chunks...") | |
try: | |
merge_audio(video_chunks, final_video_path) # Re-using merge_audio logic for video files | |
# video_chunks are removed inside merge_audio if successful | |
except Exception as e: | |
gr.Error(f"Failed to merge video chunks: {e}") | |
final_video_path = None # Indicate failure | |
return final_srt_path, final_video_path | |
else: # Single file processing (no splitting) | |
final_srt_path = None | |
final_video_path = None | |
temp_srt_path = os.path.splitext(processed_path)[0] + ".srt" # Use processed_path for naming | |
try: | |
gr.Info("Processing file...") | |
with open(processed_path, "rb") as file: | |
transcription_json_response = client.audio.transcriptions.create( | |
file=(os.path.basename(processed_path), file.read()), | |
model=model, | |
prompt=prompt, | |
response_format="verbose_json", | |
timestamp_granularities=timestamp_granularities_list, | |
language=None if auto_detect_language else language, | |
temperature=0.0, | |
) | |
srt_content = "" # Initialize | |
if primary_granularity == "word": | |
word_data = transcription_json_response.words | |
if word_data: | |
srt_content = words_json_to_srt(word_data, 0) # Start IDs from 0 | |
else: | |
gr.Warning("API returned no word timestamps.") | |
elif primary_granularity == "segment": | |
segment_data = transcription_json_response.segments | |
if segment_data: | |
# No need to adjust IDs/timestamps for single file | |
srt_content = json_to_srt(segment_data) | |
else: | |
gr.Warning("API returned no segment timestamps.") | |
else: | |
# Should not happen | |
gr.Warning("Invalid timestamp granularity selected. Skipping SRT generation.") | |
# Write SRT file if content exists | |
if srt_content: | |
with open(temp_srt_path, "w", encoding="utf-8") as temp_srt_file: | |
temp_srt_file.write(srt_content) | |
final_srt_path = temp_srt_path # Set the final path | |
# Video embedding logic | |
if include_video and input_file_path.lower().endswith((".mp4", ".webm")): | |
try: | |
output_video_path = processed_path.replace( | |
os.path.splitext(processed_path)[1], "_with_subs" + os.path.splitext(processed_path)[1] | |
) | |
# Handle font selection | |
font_name = None | |
font_dir = None | |
if font_selection == "Custom Font File" and font_file: | |
font_name = os.path.splitext(os.path.basename(font_file.name))[0] | |
font_dir = os.path.dirname(font_file.name) | |
elif font_selection == "Custom Font File" and not font_file: | |
gr.Warning(f"Custom Font File selected but none uploaded. Using default font.") | |
# FFmpeg command | |
gr.Info("Adding subtitles to video...") | |
subprocess.run( | |
[ | |
"ffmpeg", "-y", "-i", processed_path, # Use processed_path as input | |
"-vf", f"subtitles={temp_srt_path}:fontsdir={font_dir}:force_style='FontName={font_name},Fontsize={int(font_size)},PrimaryColour=&H{font_color[1:]}&,OutlineColour=&H{outline_color[1:]}&,BorderStyle={int(outline_thickness)},Outline=1'", | |
"-preset", "fast", output_video_path, | |
], check=True, | |
) | |
final_video_path = output_video_path | |
except subprocess.CalledProcessError as e: | |
gr.Error(f"Error during subtitle addition: {e}") | |
# Keep SRT file, but no video output | |
final_video_path = None | |
except Exception as e: | |
gr.Error(f"Error preparing subtitle style for video: {e}") | |
final_video_path = None | |
elif include_video: | |
# Warning for non-video input shown once | |
gr.Warning(f"Include Video checked, but input isn't MP4/WebM. Only SRT will be generated.", duration=15) | |
# Clean up downsampled file if it was created and different from original input | |
if processed_path != input_file_path and os.path.exists(processed_path): | |
try: os.remove(processed_path) | |
except: pass | |
return final_srt_path, final_video_path # Return paths (video might be None) | |
else: # No SRT content generated | |
gr.Warning("No SRT content could be generated.") | |
# Clean up downsampled file if created | |
if processed_path != input_file_path and os.path.exists(processed_path): | |
try: os.remove(processed_path) | |
except: pass | |
return None, None # Return None for both outputs | |
except groq.AuthenticationError as e: | |
handle_groq_error(e, model) | |
except groq.RateLimitError as e: | |
handle_groq_error(e, model) | |
except Exception as e: # Catch any other error during single file processing | |
# Clean up downsampled file if created | |
if processed_path != input_file_path and os.path.exists(processed_path): | |
try: os.remove(processed_path) | |
except: pass | |
# Clean up potentially created empty SRT | |
if os.path.exists(temp_srt_path): | |
try: os.remove(temp_srt_path) | |
except: pass | |
raise gr.Error(f"An unexpected error occurred: {e}") | |
theme = gr.themes.Soft( | |
primary_hue="sky", | |
secondary_hue="blue", | |
neutral_hue="neutral" | |
).set( | |
border_color_primary='*neutral_300', | |
block_border_width='1px', | |
block_border_width_dark='1px', | |
block_title_border_color='*secondary_100', | |
block_title_border_color_dark='*secondary_200', | |
input_background_fill_focus='*secondary_300', | |
input_border_color='*border_color_primary', | |
input_border_color_focus='*secondary_500', | |
input_border_width='1px', | |
input_border_width_dark='1px', | |
slider_color='*secondary_500', | |
slider_color_dark='*secondary_600' | |
) | |
css = """ | |
.gradio-container{max-width: 1400px !important} | |
h1{text-align:center} | |
.extra-option { | |
display: none; | |
} | |
.extra-option.visible { | |
display: block; | |
} | |
""" | |
with gr.Blocks(theme=theme, css=css) as interface: | |
gr.Markdown( | |
""" | |
# Fast Subtitle Maker | |
Inference by Groq API | |
If you are having API Rate Limit issues, you can retry later based on the [rate limits](https://console.groq.com/docs/rate-limits) or <a href="https://huggingface.co/spaces/Nick088/Fast-Subtitle-Maker?duplicate=true" style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank"> <img style="margin-bottom: 0em;display: inline;margin-top: -.25em;" src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a> with <a href=https://console.groq.com/keys>your own API Key</a> </p> | |
Hugging Face Space by [Nick088](https://linktr.ee/Nick088) | |
<br> <a href="https://discord.gg/AQsmBmgEPy"> <img src="https://img.shields.io/discord/1198701940511617164?color=%23738ADB&label=Discord&style=for-the-badge" alt="Discord"> </a> | |
""" | |
) | |
with gr.Column(): | |
# Input components | |
input_file = gr.File(label="Upload Audio/Video", file_types=[f".{ext}" for ext in ALLOWED_FILE_EXTENSIONS], visible=True) | |
# Model and options | |
model_choice_subtitles = gr.Dropdown(choices=["whisper-large-v3", "whisper-large-v3-turbo", "distil-whisper-large-v3-en"], value="whisper-large-v3-turbo", label="Audio Speech Recogition (ASR) Model", info="'whisper-large-v3' = Multilingual high quality, 'whisper-large-v3-turbo' = Multilingual fast with minimal impact on quality, good balance, 'distil-whisper-large-v3-en' = English only, fastest with also slight impact on quality") | |
transcribe_prompt_subtitles = gr.Textbox(label="Prompt (Optional)", info="Specify any context or spelling corrections.") | |
timestamp_granularities_str = gr.Dropdown(choices=["word", "segment"], value="word", label="Timestamp Granularities", info="The level of detail of time measurement in the timestamps.") | |
with gr.Row(): | |
language_subtitles = gr.Dropdown(choices=[(lang, code) for lang, code in LANGUAGE_CODES.items()], value="en", label="Language") | |
auto_detect_language_subtitles = gr.Checkbox(label="Auto Detect Language") | |
# Generate button | |
transcribe_button_subtitles = gr.Button("Generate Subtitles") | |
# Output and settings | |
include_video_option = gr.Checkbox(label="Include Video with Subtitles") | |
gr.Markdown("The SubText Rip (SRT) File, contains the subtitles, you can upload this to any video editing app for adding the subs to your video and also modify/stilyze them") | |
srt_output = gr.File(label="SRT Output File") | |
show_subtitle_settings = gr.Checkbox(label="Show Subtitle Video Settings", visible=False) | |
with gr.Row(visible=False) as subtitle_video_settings: | |
with gr.Column(): | |
font_selection = gr.Radio(["Arial", "Custom Font File"], value="Arial", label="Font Selection", info="Select what font to use") | |
font_file = gr.File(label="Upload Font File (TTF or OTF)", file_types=[".ttf", ".otf"], visible=False) | |
font_color = gr.ColorPicker(label="Font Color", value="#FFFFFF") | |
font_size = gr.Slider(label="Font Size (in pixels)", minimum=10, maximum=60, value=24, step=1) | |
outline_thickness = gr.Slider(label="Outline Thickness", minimum=0, maximum=5, value=1, step=1) | |
outline_color = gr.ColorPicker(label="Outline Color", value="#000000") | |
video_output = gr.Video(label="Output Video with Subtitles", visible=False) | |
# Event bindings | |
# show video output | |
include_video_option.change(lambda include_video: gr.update(visible=include_video), inputs=[include_video_option], outputs=[video_output]) | |
# show video output subs settings checkbox | |
include_video_option.change(lambda include_video: gr.update(visible=include_video), inputs=[include_video_option], outputs=[show_subtitle_settings]) | |
# show video output subs settings | |
show_subtitle_settings.change(lambda show: gr.update(visible=show), inputs=[show_subtitle_settings], outputs=[subtitle_video_settings]) | |
# uncheck show subtitle settings checkbox if include video is unchecked (to make the output subs settings not visible) | |
show_subtitle_settings.change(lambda show, include_video: gr.update(visible=show and include_video), inputs=[show_subtitle_settings, include_video_option], outputs=[show_subtitle_settings]) | |
# show custom font file selection | |
font_selection.change(lambda font_selection: gr.update(visible=font_selection == "Custom Font File"), inputs=[font_selection], outputs=[font_file]) | |
# Update language dropdown based on model selection | |
def update_language_options(model): | |
if model == "distil-whisper-large-v3-en": | |
return gr.update(choices=[("English", "en")], value="en", interactive=False) | |
else: | |
return gr.update(choices=[(lang, code) for lang, code in LANGUAGE_CODES.items()], value="en", interactive=True) | |
model_choice_subtitles.change(fn=update_language_options, inputs=[model_choice_subtitles], outputs=[language_subtitles]) | |
# Modified generate subtitles event | |
transcribe_button_subtitles.click( | |
fn=generate_subtitles, | |
inputs=[ | |
input_file, | |
transcribe_prompt_subtitles, | |
timestamp_granularities_str, | |
language_subtitles, | |
auto_detect_language_subtitles, | |
model_choice_subtitles, | |
include_video_option, | |
font_selection, | |
font_file, | |
font_color, | |
font_size, | |
outline_thickness, | |
outline_color, | |
], | |
outputs=[srt_output, video_output], | |
) | |
interface.launch(share=True) |