File size: 32,295 Bytes
ad5c122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
809aa1a
 
 
 
 
ad5c122
 
6cbeb97
ad5c122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
809aa1a
ad5c122
 
 
809aa1a
ad5c122
 
809aa1a
ad5c122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
809aa1a
 
ad5c122
 
809aa1a
 
ad5c122
 
 
 
 
 
 
 
 
809aa1a
ad5c122
 
 
 
 
809aa1a
ad5c122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
809aa1a
ad5c122
 
 
 
caaeb6e
 
 
 
 
 
 
 
 
ad5c122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
caaeb6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
809aa1a
17a5d04
 
809aa1a
caaeb6e
 
 
 
 
 
 
 
 
 
 
ad5c122
caaeb6e
ad5c122
 
caaeb6e
 
 
ad5c122
caaeb6e
ad5c122
 
 
 
 
 
caaeb6e
ad5c122
 
 
 
caaeb6e
 
 
 
 
 
 
 
 
 
ad5c122
caaeb6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
809aa1a
caaeb6e
ad5c122
caaeb6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad5c122
 
caaeb6e
ad5c122
caaeb6e
 
 
 
 
 
 
 
 
 
 
 
 
 
ad5c122
 
caaeb6e
 
 
 
ad5c122
caaeb6e
ad5c122
 
 
 
 
 
caaeb6e
ad5c122
 
 
 
caaeb6e
ad5c122
caaeb6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad5c122
caaeb6e
 
 
 
 
 
 
 
809aa1a
 
ad5c122
 
caaeb6e
 
 
 
 
 
 
 
 
 
 
ad5c122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
809aa1a
ad5c122
 
 
 
 
 
 
99d3b92
ad5c122
 
809aa1a
 
 
 
 
 
44dfbf8
809aa1a
caaeb6e
ad5c122
 
 
809aa1a
 
 
 
 
ad5c122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17a5d04
ad5c122
 
 
 
 
 
 
 
 
 
6cbeb97
 
 
 
 
 
 
 
 
 
809aa1a
ad5c122
809aa1a
ad5c122
809aa1a
ad5c122
caaeb6e
ad5c122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
import os
import subprocess
import json
from datetime import timedelta
import tempfile
import re
import gradio as gr
import groq
from groq import Groq


# setup groq 

client = Groq(api_key=os.environ.get("Groq_Api_Key"))

def handle_groq_error(e, model_name):
    error_data = e.args[0]

    if isinstance(error_data, str):
        # Use regex to extract the JSON part of the string
        json_match = re.search(r'(\{.*\})', error_data)
        if json_match:
            json_str = json_match.group(1)
            # Ensure the JSON string is well-formed
            json_str = json_str.replace("'", '"')  # Replace single quotes with double quotes
            error_data = json.loads(json_str)

    if isinstance(e, groq.AuthenticationError):
        if isinstance(error_data, dict) and 'error' in error_data and 'message' in error_data['error']:
            error_message = error_data['error']['message']
            raise gr.Error(error_message)
    elif isinstance(e, groq.RateLimitError):
        if isinstance(error_data, dict) and 'error' in error_data and 'message' in error_data['error']:
            error_message = error_data['error']['message']
            error_message = re.sub(r'org_[a-zA-Z0-9]+', 'org_(censored)', error_message) # censor org
            raise gr.Error(error_message)
    else:
        raise gr.Error(f"Error during Groq API call: {e}")


# language codes for subtitle maker

LANGUAGE_CODES = {
    "English": "en",
    "Chinese": "zh",
    "German": "de",
    "Spanish": "es",
    "Russian": "ru",
    "Korean": "ko",
    "French": "fr",
    "Japanese": "ja",
    "Portuguese": "pt",
    "Turkish": "tr",
    "Polish": "pl",
    "Catalan": "ca",
    "Dutch": "nl",
    "Arabic": "ar",
    "Swedish": "sv",
    "Italian": "it",
    "Indonesian": "id",
    "Hindi": "hi",
    "Finnish": "fi",
    "Vietnamese": "vi",
    "Hebrew": "he",
    "Ukrainian": "uk",
    "Greek": "el",
    "Malay": "ms",
    "Czech": "cs",
    "Romanian": "ro",
    "Danish": "da",
    "Hungarian": "hu",
    "Tamil": "ta",
    "Norwegian": "no",
    "Thai": "th",
    "Urdu": "ur",
    "Croatian": "hr",
    "Bulgarian": "bg",
    "Lithuanian": "lt",
    "Latin": "la",
    "Māori": "mi",
    "Malayalam": "ml",
    "Welsh": "cy",
    "Slovak": "sk",
    "Telugu": "te",
    "Persian": "fa",
    "Latvian": "lv",
    "Bengali": "bn",
    "Serbian": "sr",
    "Azerbaijani": "az",
    "Slovenian": "sl",
    "Kannada": "kn",
    "Estonian": "et",
    "Macedonian": "mk",
    "Breton": "br",
    "Basque": "eu",
    "Icelandic": "is",
    "Armenian": "hy",
    "Nepali": "ne",
    "Mongolian": "mn",
    "Bosnian": "bs",
    "Kazakh": "kk",
    "Albanian": "sq",
    "Swahili": "sw",
    "Galician": "gl",
    "Marathi": "mr",
    "Panjabi": "pa",
    "Sinhala": "si",
    "Khmer": "km",
    "Shona": "sn",
    "Yoruba": "yo",
    "Somali": "so",
    "Afrikaans": "af",
    "Occitan": "oc",
    "Georgian": "ka",
    "Belarusian": "be",
    "Tajik": "tg",
    "Sindhi": "sd",
    "Gujarati": "gu",
    "Amharic": "am",
    "Yiddish": "yi",
    "Lao": "lo",
    "Uzbek": "uz",
    "Faroese": "fo",
    "Haitian": "ht",
    "Pashto": "ps",
    "Turkmen": "tk",
    "Norwegian Nynorsk": "nn",
    "Maltese": "mt",
    "Sanskrit": "sa",
    "Luxembourgish": "lb",
    "Burmese": "my",
    "Tibetan": "bo",
    "Tagalog": "tl",
    "Malagasy": "mg",
    "Assamese": "as",
    "Tatar": "tt",
    "Hawaiian": "haw",
    "Lingala": "ln",
    "Hausa": "ha",
    "Bashkir": "ba",
    "jw": "jw",
    "Sundanese": "su",
}


# helper functions

def split_audio(input_file_path, chunk_size_mb):
    chunk_size = chunk_size_mb * 1024 * 1024  # Convert MB to bytes
    file_number = 1
    chunks = []
    with open(input_file_path, 'rb') as f:
        chunk = f.read(chunk_size)
        while chunk:
            chunk_name = f"{os.path.splitext(input_file_path)[0]}_part{file_number:03}.mp3" # Pad file number for correct ordering
            with open(chunk_name, 'wb') as chunk_file:
                chunk_file.write(chunk)
            chunks.append(chunk_name)
            file_number += 1
            chunk = f.read(chunk_size)
    return chunks

def merge_audio(chunks, output_file_path):
    with open("temp_list.txt", "w") as f:
        for file in chunks:
            f.write(f"file '{file}'\n")
    try:
        subprocess.run(
            [
                "ffmpeg",
                "-f",
                "concat",
                "-safe", "0",
                "-i",
                "temp_list.txt",
                "-c",
                "copy",
                "-y",
                output_file_path
            ],
            check=True
        )
        os.remove("temp_list.txt")
        for chunk in chunks:
            os.remove(chunk)
    except subprocess.CalledProcessError as e:
        raise gr.Error(f"Error during audio merging: {e}")


# Checks file extension, size, and downsamples or splits if needed.

ALLOWED_FILE_EXTENSIONS = ["mp3", "mp4", "mpeg", "mpga", "m4a", "wav", "webm"]
MAX_FILE_SIZE_MB = 25
CHUNK_SIZE_MB = 25

def check_file(input_file_path):
    if not input_file_path:
        raise gr.Error("Please upload an audio/video file.")

    file_size_mb = os.path.getsize(input_file_path) / (1024 * 1024)
    file_extension = input_file_path.split(".")[-1].lower()

    if file_extension not in ALLOWED_FILE_EXTENSIONS:
        raise gr.Error(f"Invalid file type (.{file_extension}). Allowed types: {', '.join(ALLOWED_FILE_EXTENSIONS)}")

    if file_size_mb > MAX_FILE_SIZE_MB:
        gr.Warning(
            f"File size too large ({file_size_mb:.2f} MB). Attempting to downsample to 16kHz MP3 128kbps. Maximum size allowed: {MAX_FILE_SIZE_MB} MB"
        )

        output_file_path = os.path.splitext(input_file_path)[0] + "_downsampled.mp3"
        try:
            subprocess.run(
                [
                    "ffmpeg",
                    "-i",
                    input_file_path,
                    "-ar",
                    "16000",
                    "-ab",
                    "128k",
                    "-ac",
                    "1",
                    "-f",
                    "mp3",
                    "-y",
                    output_file_path,
                ],
                check=True
            )

            # Check size after downsampling
            downsampled_size_mb = os.path.getsize(output_file_path) / (1024 * 1024)
            if downsampled_size_mb > MAX_FILE_SIZE_MB:
                gr.Warning(f"File still too large after downsampling ({downsampled_size_mb:.2f} MB). Splitting into {CHUNK_SIZE_MB} MB chunks.")
                return split_audio(output_file_path, CHUNK_SIZE_MB), "split"

            return output_file_path, None
        except subprocess.CalledProcessError as e:
            raise gr.Error(f"Error during downsampling: {e}")
    return input_file_path, None


# subtitle maker

def format_time(seconds_float):
    # Calculate total whole seconds and milliseconds
    total_seconds = int(seconds_float)
    milliseconds = int((seconds_float - total_seconds) * 1000)

    # Calculate hours, minutes, and remaining seconds
    hours = total_seconds // 3600
    minutes = (total_seconds % 3600) // 60
    seconds = total_seconds % 60

    return f"{hours:02}:{minutes:02}:{seconds:02},{milliseconds:03}"

def json_to_srt(transcription_json):
    srt_lines = []

    for segment in transcription_json:
        start_time = format_time(segment['start'])
        end_time = format_time(segment['end'])
        text = segment['text']

        srt_line = f"{segment['id']+1}\n{start_time} --> {end_time}\n{text}\n"
        srt_lines.append(srt_line)

    return '\n'.join(srt_lines)


def words_json_to_srt(words_data, starting_id=0):
    srt_lines = []
    previous_end_time = 0.0  # Keep track of the end time of the previous word

    for i, word_entry in enumerate(words_data):
        # Get original start and end times
        start_seconds = word_entry['start']
        end_seconds = word_entry['end']

        # --- Overlap Prevention Logic ---
        # Ensure the start time is not before the previous word ended
        start_seconds = max(start_seconds, previous_end_time)

        # Ensure the end time is not before the start time (can happen with adjustments)
        # And add a tiny minimum duration (e.g., 50ms) if start and end are identical,
        # otherwise the subtitle might flash too quickly or be ignored by players.
        min_duration = 0.050 # 50 milliseconds
        if end_seconds <= start_seconds:
             end_seconds = start_seconds + min_duration
        # --- End of Overlap Prevention ---
        
        # Format the potentially adjusted times
        start_time_fmt = format_time(start_seconds)
        end_time_fmt = format_time(end_seconds)
        text = word_entry['word']
        srt_id = starting_id + i + 1

        srt_line = f"{srt_id}\n{start_time_fmt} --> {end_time_fmt}\n{text}\n"
        srt_lines.append(srt_line)

        # Update previous_end_time for the next iteration using the *adjusted* end time
        previous_end_time = end_seconds 

    return '\n'.join(srt_lines)

def generate_subtitles(input_file, prompt, timestamp_granularities_str, language, auto_detect_language, model, include_video, font_selection, font_file, font_color, font_size, outline_thickness, outline_color):
    
    input_file_path = input_file

    processed_path, split_status = check_file(input_file_path)
    full_srt_content = "" # Used for accumulating SRT content string for split files
    srt_chunks_paths = [] # Used to store paths of individual SRT chunk files for merging
    video_chunks = []     # Used to store paths of video chunks with embedded subs
    total_duration = 0    # Cumulative duration for timestamp adjustment in split files
    srt_entry_offset = 0  # Cumulative SRT entry count (words or segments) for ID adjustment

    # transforms the gradio dropdown choice str to a python list needed for the groq api
    timestamp_granularities_list = [gran.strip() for gran in timestamp_granularities_str.split(',') if gran.strip()]
    
    # Determine primary granularity for logic (prefer word if both specified, else segment)
    primary_granularity = "word" if "word" in timestamp_granularities_list else "segment"

    # handling splitted files or single ones
    if split_status == "split":
        for i, chunk_path in enumerate(processed_path):
            chunk_srt_content = "" # SRT content for the current chunk
            temp_srt_path = f"{os.path.splitext(chunk_path)[0]}.srt" # Path for this chunk's SRT file

            try:
                gr.Info(f"Processing chunk {i+1}/{len(processed_path)}...")
                with open(chunk_path, "rb") as file:
                    transcription_json_response = client.audio.transcriptions.create(
                        file=(os.path.basename(chunk_path), file.read()),
                        model=model,
                        prompt=prompt,
                        response_format="verbose_json",
                        timestamp_granularities=timestamp_granularities_list,
                        language=None if auto_detect_language else language,
                        temperature=0.0,
                    )

                if primary_granularity == "word":
                    word_data = transcription_json_response.words
                    if word_data:
                        # Adjust timestamps BEFORE generating SRT
                        adjusted_word_data = []
                        for entry in word_data:
                            adjusted_entry = entry.copy()
                            adjusted_entry['start'] += total_duration
                            adjusted_entry['end'] += total_duration
                            adjusted_word_data.append(adjusted_entry)
                            
                        # Generate SRT using adjusted data and current offset
                        chunk_srt_content = words_json_to_srt(adjusted_word_data, srt_entry_offset)

                        # Update offsets for the *next* chunk
                        total_duration = adjusted_word_data[-1]['end'] # Use adjusted end time
                        srt_entry_offset += len(word_data) # Increment by number of words in this chunk
                    else:
                         gr.Warning(f"API returned no word timestamps for chunk {i+1}.")

                elif primary_granularity == "segment":
                    segment_data = transcription_json_response.segments
                    if segment_data:
                        # Adjust timestamps and IDs BEFORE generating SRT
                        adjusted_segment_data = []
                        max_original_id = -1
                        for entry in segment_data:
                            adjusted_entry = entry.copy()
                            adjusted_entry['start'] += total_duration
                            adjusted_entry['end'] += total_duration
                            max_original_id = max(max_original_id, adjusted_entry['id']) # Track max original ID for offset calc
                            adjusted_entry['id'] += srt_entry_offset # Adjust ID for SRT generation
                            adjusted_segment_data.append(adjusted_entry)

                        # Generate SRT using adjusted data
                        chunk_srt_content = json_to_srt(adjusted_segment_data) # json_to_srt uses the 'id' field directly

                        # Update offsets for the *next* chunk
                        total_duration = adjusted_segment_data[-1]['end'] # Use adjusted end time
                        srt_entry_offset += (max_original_id + 1) # Increment by number of segments in this chunk (based on original IDs)
                    else:
                         gr.Warning(f"API returned no segment timestamps for chunk {i+1}.")
                else:
                     # This case should ideally not be reached due to dropdown default/logic
                     gr.Warning(f"Invalid timestamp granularity for chunk {i+1}. Skipping SRT generation for this chunk.")

                # Write and store path for this chunk's SRT file if content exists
                if chunk_srt_content:
                    with open(temp_srt_path, "w", encoding="utf-8") as temp_srt_file:
                        temp_srt_file.write(chunk_srt_content)
                    srt_chunks_paths.append(temp_srt_path)
                    full_srt_content += chunk_srt_content # Append to the full content string as well

                    # Video embedding for the chunk
                    if include_video and input_file_path.lower().endswith((".mp4", ".webm")):
                        try:
                            output_video_chunk_path = chunk_path.replace(os.path.splitext(chunk_path)[1], "_with_subs" + os.path.splitext(chunk_path)[1])
                            # Handle font selection
                            font_name = None
                            font_dir = None
                            if font_selection == "Custom Font File" and font_file:
                                font_name = os.path.splitext(os.path.basename(font_file.name))[0]
                                font_dir = os.path.dirname(font_file.name)
                            elif font_selection == "Custom Font File" and not font_file:
                                gr.Warning(f"Custom Font File selected but none uploaded. Using default font for chunk {i+1}.")
                            
                            # FFmpeg command for the chunk
                            subprocess.run(
                                [
                                    "ffmpeg", "-y", "-i", chunk_path,
                                    "-vf", f"subtitles={temp_srt_path}:fontsdir={font_dir}:force_style='FontName={font_name},Fontsize={int(font_size)},PrimaryColour=&H{font_color[1:]}&,OutlineColour=&H{outline_color[1:]}&,BorderStyle={int(outline_thickness)},Outline=1'",
                                    "-preset", "fast", output_video_chunk_path,
                                ], check=True,
                            )
                            video_chunks.append(output_video_chunk_path)
                        except subprocess.CalledProcessError as e:
                            # Warn but continue processing other chunks
                            gr.Warning(f"Error adding subtitles to video chunk {i+1}: {e}. Skipping video for this chunk.")
                        except Exception as e: # Catch other potential errors during font handling etc.
                            gr.Warning(f"Error preparing subtitle style for video chunk {i+1}: {e}. Skipping video for this chunk.")

                    elif include_video and i == 0: # Show warning only once for non-video input
                         gr.Warning(f"Include Video checked, but input isn't MP4/WebM. Only SRT will be generated.", duration=15)


            except groq.AuthenticationError as e:
                handle_groq_error(e, model) # This will raise gr.Error and stop execution
            except groq.RateLimitError as e:
                handle_groq_error(e, model) # This will raise gr.Error and stop execution
            except Exception as e:
                gr.Warning(f"Error processing chunk {i+1}: {e}. Skipping this chunk.")
                # Remove potentially incomplete SRT for this chunk if it exists
                if os.path.exists(temp_srt_path):
                    try: os.remove(temp_srt_path)
                    except: pass
                continue # Move to the next chunk

        # After processing all chunks
        final_srt_path = None
        final_video_path = None

        # Merge SRT chunks if any were created
        if srt_chunks_paths:
            final_srt_path = os.path.splitext(input_file_path)[0] + "_final.srt"
            gr.Info("Merging SRT chunks...")
            with open(final_srt_path, 'w', encoding="utf-8") as outfile:
                 # Use the full_srt_content string which ensures correct order and content
                 outfile.write(full_srt_content)
            # Clean up individual srt chunks paths
            for srt_chunk_file in srt_chunks_paths:
                 try: os.remove(srt_chunk_file)
                 except: pass
            # Clean up intermediate audio chunks used for transcription
            for chunk in processed_path:
                try: os.remove(chunk)
                except: pass
        else:
             gr.Warning("No SRT content was generated from any chunk.")


        # Merge video chunks if any were created
        if video_chunks:
             # Check if number of video chunks matches expected number based on successful SRT generation
             if len(video_chunks) != len(srt_chunks_paths):
                 gr.Warning("Mismatch between successful SRT chunks and video chunks created. Video merge might be incomplete.")
             
             final_video_path = os.path.splitext(input_file_path)[0] + '_merged_video_with_subs.mp4' # More descriptive name
             gr.Info("Merging video chunks...")
             try:
                 merge_audio(video_chunks, final_video_path) # Re-using merge_audio logic for video files
                 # video_chunks are removed inside merge_audio if successful
             except Exception as e:
                 gr.Error(f"Failed to merge video chunks: {e}")
                 final_video_path = None # Indicate failure
        
        return final_srt_path, final_video_path

    else:  # Single file processing (no splitting)
        final_srt_path = None
        final_video_path = None
        temp_srt_path = os.path.splitext(processed_path)[0] + ".srt" # Use processed_path for naming

        try:
            gr.Info("Processing file...")
            with open(processed_path, "rb") as file:
                transcription_json_response = client.audio.transcriptions.create(
                    file=(os.path.basename(processed_path), file.read()),
                    model=model,
                    prompt=prompt,
                    response_format="verbose_json",
                    timestamp_granularities=timestamp_granularities_list,
                    language=None if auto_detect_language else language,
                    temperature=0.0,
                )

            srt_content = "" # Initialize

            if primary_granularity == "word":
                word_data = transcription_json_response.words
                if word_data:
                    srt_content = words_json_to_srt(word_data, 0) # Start IDs from 0
                else:
                    gr.Warning("API returned no word timestamps.")
            elif primary_granularity == "segment":
                segment_data = transcription_json_response.segments
                if segment_data:
                    # No need to adjust IDs/timestamps for single file
                    srt_content = json_to_srt(segment_data)
                else:
                     gr.Warning("API returned no segment timestamps.")
            else:
                 # Should not happen
                 gr.Warning("Invalid timestamp granularity selected. Skipping SRT generation.")

            # Write SRT file if content exists
            if srt_content:
                with open(temp_srt_path, "w", encoding="utf-8") as temp_srt_file:
                    temp_srt_file.write(srt_content)
                final_srt_path = temp_srt_path # Set the final path

                # Video embedding logic
                if include_video and input_file_path.lower().endswith((".mp4", ".webm")):
                    try:
                        output_video_path = processed_path.replace(
                            os.path.splitext(processed_path)[1], "_with_subs" + os.path.splitext(processed_path)[1]
                        )
                        # Handle font selection
                        font_name = None
                        font_dir = None
                        if font_selection == "Custom Font File" and font_file:
                            font_name = os.path.splitext(os.path.basename(font_file.name))[0]
                            font_dir = os.path.dirname(font_file.name)
                        elif font_selection == "Custom Font File" and not font_file:
                            gr.Warning(f"Custom Font File selected but none uploaded. Using default font.")

                        # FFmpeg command
                        gr.Info("Adding subtitles to video...")
                        subprocess.run(
                            [
                                "ffmpeg", "-y", "-i", processed_path, # Use processed_path as input
                                "-vf", f"subtitles={temp_srt_path}:fontsdir={font_dir}:force_style='FontName={font_name},Fontsize={int(font_size)},PrimaryColour=&H{font_color[1:]}&,OutlineColour=&H{outline_color[1:]}&,BorderStyle={int(outline_thickness)},Outline=1'",
                                "-preset", "fast", output_video_path,
                            ], check=True,
                        )
                        final_video_path = output_video_path
                    except subprocess.CalledProcessError as e:
                        gr.Error(f"Error during subtitle addition: {e}")
                        # Keep SRT file, but no video output
                        final_video_path = None
                    except Exception as e:
                         gr.Error(f"Error preparing subtitle style for video: {e}")
                         final_video_path = None

                elif include_video:
                     # Warning for non-video input shown once
                     gr.Warning(f"Include Video checked, but input isn't MP4/WebM. Only SRT will be generated.", duration=15)
                 
                # Clean up downsampled file if it was created and different from original input
                if processed_path != input_file_path and os.path.exists(processed_path):
                    try: os.remove(processed_path)
                    except: pass
                
                return final_srt_path, final_video_path # Return paths (video might be None)
            
            else: # No SRT content generated
                gr.Warning("No SRT content could be generated.")
                # Clean up downsampled file if created
                if processed_path != input_file_path and os.path.exists(processed_path):
                    try: os.remove(processed_path)
                    except: pass
                return None, None # Return None for both outputs

        except groq.AuthenticationError as e:
            handle_groq_error(e, model)
        except groq.RateLimitError as e:
            handle_groq_error(e, model)
        except Exception as e: # Catch any other error during single file processing
             # Clean up downsampled file if created
            if processed_path != input_file_path and os.path.exists(processed_path):
                try: os.remove(processed_path)
                except: pass
            # Clean up potentially created empty SRT
            if os.path.exists(temp_srt_path):
                try: os.remove(temp_srt_path)
                except: pass
            raise gr.Error(f"An unexpected error occurred: {e}")
            

theme = gr.themes.Soft(
    primary_hue="sky",
    secondary_hue="blue",
    neutral_hue="neutral"
).set(
    border_color_primary='*neutral_300',
    block_border_width='1px',
    block_border_width_dark='1px',
    block_title_border_color='*secondary_100',
    block_title_border_color_dark='*secondary_200',
    input_background_fill_focus='*secondary_300',
    input_border_color='*border_color_primary',
    input_border_color_focus='*secondary_500',
    input_border_width='1px',
    input_border_width_dark='1px',
    slider_color='*secondary_500',
    slider_color_dark='*secondary_600'
)

css = """
.gradio-container{max-width: 1400px !important}
h1{text-align:center}
.extra-option {
    display: none;
}
.extra-option.visible {
    display: block;
}
"""



with gr.Blocks(theme=theme, css=css) as interface:
    gr.Markdown(
        """
    # Fast Subtitle Maker
    Inference by Groq API  
    If you are having API Rate Limit issues, you can retry later based on the [rate limits](https://console.groq.com/docs/rate-limits) or <a href="https://huggingface.co/spaces/Nick088/Fast-Subtitle-Maker?duplicate=true" style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank"> <img style="margin-bottom: 0em;display: inline;margin-top: -.25em;" src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a> with <a href=https://console.groq.com/keys>your own API Key</a> </p>
    Hugging Face Space by [Nick088](https://linktr.ee/Nick088)  
    <br> <a href="https://discord.gg/AQsmBmgEPy"> <img src="https://img.shields.io/discord/1198701940511617164?color=%23738ADB&label=Discord&style=for-the-badge" alt="Discord"> </a>  
    """
    )

    with gr.Column():
        # Input components
        input_file = gr.File(label="Upload Audio/Video", file_types=[f".{ext}" for ext in ALLOWED_FILE_EXTENSIONS], visible=True)

    # Model and options
    model_choice_subtitles = gr.Dropdown(choices=["whisper-large-v3", "whisper-large-v3-turbo", "distil-whisper-large-v3-en"], value="whisper-large-v3-turbo", label="Audio Speech Recogition (ASR) Model", info="'whisper-large-v3' = Multilingual high quality, 'whisper-large-v3-turbo' = Multilingual fast with minimal impact on quality, good balance, 'distil-whisper-large-v3-en' = English only, fastest with also slight impact on quality")
    transcribe_prompt_subtitles = gr.Textbox(label="Prompt (Optional)", info="Specify any context or spelling corrections.")
    timestamp_granularities_str = gr.Dropdown(choices=["word", "segment"], value="word", label="Timestamp Granularities", info="The level of detail of time measurement in the timestamps.")
    with gr.Row():
        language_subtitles = gr.Dropdown(choices=[(lang, code) for lang, code in LANGUAGE_CODES.items()], value="en", label="Language")
        auto_detect_language_subtitles = gr.Checkbox(label="Auto Detect Language")

    # Generate button
    transcribe_button_subtitles = gr.Button("Generate Subtitles")

    # Output and settings
    include_video_option = gr.Checkbox(label="Include Video with Subtitles")
    gr.Markdown("The SubText Rip (SRT) File, contains the subtitles, you can upload this to any video editing app for adding the subs to your video and also modify/stilyze them")
    srt_output = gr.File(label="SRT Output File")
    show_subtitle_settings = gr.Checkbox(label="Show Subtitle Video Settings", visible=False)
    with gr.Row(visible=False) as subtitle_video_settings:
        with gr.Column():
            font_selection = gr.Radio(["Arial", "Custom Font File"], value="Arial", label="Font Selection", info="Select what font to use")
            font_file = gr.File(label="Upload Font File (TTF or OTF)", file_types=[".ttf", ".otf"], visible=False)
        font_color = gr.ColorPicker(label="Font Color", value="#FFFFFF")
        font_size = gr.Slider(label="Font Size (in pixels)", minimum=10, maximum=60, value=24, step=1)
        outline_thickness = gr.Slider(label="Outline Thickness", minimum=0, maximum=5, value=1, step=1)
        outline_color = gr.ColorPicker(label="Outline Color", value="#000000")

    
    video_output = gr.Video(label="Output Video with Subtitles", visible=False)


    # Event bindings
    
    # show video output
    include_video_option.change(lambda include_video: gr.update(visible=include_video), inputs=[include_video_option], outputs=[video_output])
    # show video output subs settings checkbox
    include_video_option.change(lambda include_video: gr.update(visible=include_video), inputs=[include_video_option], outputs=[show_subtitle_settings])
    # show video output subs settings
    show_subtitle_settings.change(lambda show: gr.update(visible=show), inputs=[show_subtitle_settings], outputs=[subtitle_video_settings])
    # uncheck show subtitle settings checkbox if include video is unchecked (to make the output subs settings not visible)
    show_subtitle_settings.change(lambda show, include_video: gr.update(visible=show and include_video), inputs=[show_subtitle_settings, include_video_option], outputs=[show_subtitle_settings])
    # show custom font file selection
    font_selection.change(lambda font_selection: gr.update(visible=font_selection == "Custom Font File"), inputs=[font_selection], outputs=[font_file])
    
    # Update language dropdown based on model selection
    def update_language_options(model):
        if model == "distil-whisper-large-v3-en":
            return gr.update(choices=[("English", "en")], value="en", interactive=False)
        else:
            return gr.update(choices=[(lang, code) for lang, code in LANGUAGE_CODES.items()], value="en", interactive=True)

    model_choice_subtitles.change(fn=update_language_options, inputs=[model_choice_subtitles], outputs=[language_subtitles])

    # Modified generate subtitles event
    transcribe_button_subtitles.click(
        fn=generate_subtitles,
        inputs=[
            input_file,
            transcribe_prompt_subtitles,
            timestamp_granularities_str,
            language_subtitles,
            auto_detect_language_subtitles,
            model_choice_subtitles,
            include_video_option,
            font_selection,
            font_file,
            font_color,
            font_size,
            outline_thickness,
            outline_color,
        ],
        outputs=[srt_output, video_output],
    )

interface.launch(share=True)