Spaces:
Running
Running
Add TimeStamp Granularities
Browse files
app.py
CHANGED
|
@@ -243,11 +243,15 @@ def check_file(input_file_path):
|
|
| 243 |
|
| 244 |
# subtitle maker
|
| 245 |
|
| 246 |
-
def format_time(
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 251 |
|
| 252 |
return f"{hours:02}:{minutes:02}:{seconds:02},{milliseconds:03}"
|
| 253 |
|
|
@@ -265,173 +269,324 @@ def json_to_srt(transcription_json):
|
|
| 265 |
return '\n'.join(srt_lines)
|
| 266 |
|
| 267 |
|
| 268 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 269 |
|
| 270 |
input_file_path = input_file
|
| 271 |
|
| 272 |
processed_path, split_status = check_file(input_file_path)
|
| 273 |
-
full_srt_content = ""
|
| 274 |
-
|
| 275 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 276 |
|
|
|
|
| 277 |
if split_status == "split":
|
| 278 |
-
srt_chunks = []
|
| 279 |
-
video_chunks = []
|
| 280 |
for i, chunk_path in enumerate(processed_path):
|
|
|
|
|
|
|
|
|
|
| 281 |
try:
|
|
|
|
| 282 |
with open(chunk_path, "rb") as file:
|
| 283 |
transcription_json_response = client.audio.transcriptions.create(
|
| 284 |
file=(os.path.basename(chunk_path), file.read()),
|
| 285 |
model=model,
|
| 286 |
prompt=prompt,
|
| 287 |
response_format="verbose_json",
|
|
|
|
| 288 |
language=None if auto_detect_language else language,
|
| 289 |
temperature=0.0,
|
| 290 |
)
|
| 291 |
-
transcription_json = transcription_json_response.segments
|
| 292 |
-
|
| 293 |
-
# Adjust timestamps and segment IDs
|
| 294 |
-
for segment in transcription_json:
|
| 295 |
-
segment['start'] += total_duration
|
| 296 |
-
segment['end'] += total_duration
|
| 297 |
-
segment['id'] += segment_id_offset
|
| 298 |
-
segment_id_offset += len(transcription_json)
|
| 299 |
-
total_duration += transcription_json[-1]['end'] # Update total duration
|
| 300 |
-
|
| 301 |
-
srt_content = json_to_srt(transcription_json)
|
| 302 |
-
full_srt_content += srt_content
|
| 303 |
-
temp_srt_path = f"{os.path.splitext(chunk_path)[0]}.srt"
|
| 304 |
-
with open(temp_srt_path, "w", encoding="utf-8") as temp_srt_file:
|
| 305 |
-
temp_srt_file.write(srt_content)
|
| 306 |
-
temp_srt_file.write("\n") # add a new line at the end of the srt chunk file to fix format when merged
|
| 307 |
-
srt_chunks.append(temp_srt_path)
|
| 308 |
|
| 309 |
-
if
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
#
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
gr.Warning(f"You want to use a Custom Font File, but uploaded none. Using the default Arial font.")
|
| 320 |
-
elif font_selection == "Arial":
|
| 321 |
-
font_name = None # Let FFmpeg use its default Arial
|
| 322 |
-
font_dir = None # No font directory
|
| 323 |
|
| 324 |
-
#
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 343 |
except groq.AuthenticationError as e:
|
| 344 |
-
handle_groq_error(e, model)
|
| 345 |
except groq.RateLimitError as e:
|
| 346 |
-
handle_groq_error(e, model)
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 357 |
|
| 358 |
-
# Merge SRT chunks
|
| 359 |
-
final_srt_path = os.path.splitext(input_file_path)[0] + "_final.srt"
|
| 360 |
-
with open(final_srt_path, 'w', encoding="utf-8") as outfile:
|
| 361 |
-
for chunk_srt in srt_chunks:
|
| 362 |
-
with open(chunk_srt, 'r', encoding="utf-8") as infile:
|
| 363 |
-
outfile.write(infile.read())
|
| 364 |
|
| 365 |
-
# Merge video chunks
|
| 366 |
if video_chunks:
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 371 |
|
| 372 |
else: # Single file processing (no splitting)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 373 |
try:
|
|
|
|
| 374 |
with open(processed_path, "rb") as file:
|
| 375 |
transcription_json_response = client.audio.transcriptions.create(
|
| 376 |
file=(os.path.basename(processed_path), file.read()),
|
| 377 |
model=model,
|
| 378 |
prompt=prompt,
|
| 379 |
response_format="verbose_json",
|
|
|
|
| 380 |
language=None if auto_detect_language else language,
|
| 381 |
temperature=0.0,
|
| 382 |
)
|
| 383 |
-
transcription_json = transcription_json_response.segments
|
| 384 |
|
| 385 |
-
srt_content =
|
| 386 |
-
temp_srt_path = os.path.splitext(input_file_path)[0] + ".srt"
|
| 387 |
-
with open(temp_srt_path, "w", encoding="utf-8") as temp_srt_file:
|
| 388 |
-
temp_srt_file.write(srt_content)
|
| 389 |
|
| 390 |
-
if
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 426 |
|
| 427 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 428 |
except groq.AuthenticationError as e:
|
| 429 |
handle_groq_error(e, model)
|
| 430 |
except groq.RateLimitError as e:
|
| 431 |
handle_groq_error(e, model)
|
| 432 |
-
except
|
| 433 |
-
|
| 434 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 435 |
|
| 436 |
theme = gr.themes.Soft(
|
| 437 |
primary_hue="sky",
|
|
@@ -483,6 +638,7 @@ with gr.Blocks(theme=theme, css=css) as interface:
|
|
| 483 |
# Model and options
|
| 484 |
model_choice_subtitles = gr.Dropdown(choices=["whisper-large-v3", "whisper-large-v3-turbo", "distil-whisper-large-v3-en"], value="whisper-large-v3-turbo", label="Audio Speech Recogition (ASR) Model", info="'whisper-large-v3' = Multilingual high quality, 'whisper-large-v3-turbo' = Multilingual fast with minimal impact on quality, good balance, 'distil-whisper-large-v3-en' = English only, fastest with also slight impact on quality")
|
| 485 |
transcribe_prompt_subtitles = gr.Textbox(label="Prompt (Optional)", info="Specify any context or spelling corrections.")
|
|
|
|
| 486 |
with gr.Row():
|
| 487 |
language_subtitles = gr.Dropdown(choices=[(lang, code) for lang, code in LANGUAGE_CODES.items()], value="en", label="Language")
|
| 488 |
auto_detect_language_subtitles = gr.Checkbox(label="Auto Detect Language")
|
|
@@ -536,6 +692,7 @@ with gr.Blocks(theme=theme, css=css) as interface:
|
|
| 536 |
inputs=[
|
| 537 |
input_file,
|
| 538 |
transcribe_prompt_subtitles,
|
|
|
|
| 539 |
language_subtitles,
|
| 540 |
auto_detect_language_subtitles,
|
| 541 |
model_choice_subtitles,
|
|
|
|
| 243 |
|
| 244 |
# subtitle maker
|
| 245 |
|
| 246 |
+
def format_time(seconds_float):
|
| 247 |
+
# Calculate total whole seconds and milliseconds
|
| 248 |
+
total_seconds = int(seconds_float)
|
| 249 |
+
milliseconds = int((seconds_float - total_seconds) * 1000)
|
| 250 |
+
|
| 251 |
+
# Calculate hours, minutes, and remaining seconds
|
| 252 |
+
hours = total_seconds // 3600
|
| 253 |
+
minutes = (total_seconds % 3600) // 60
|
| 254 |
+
seconds = total_seconds % 60
|
| 255 |
|
| 256 |
return f"{hours:02}:{minutes:02}:{seconds:02},{milliseconds:03}"
|
| 257 |
|
|
|
|
| 269 |
return '\n'.join(srt_lines)
|
| 270 |
|
| 271 |
|
| 272 |
+
def words_json_to_srt(words_data, starting_id=0):
|
| 273 |
+
srt_lines = []
|
| 274 |
+
previous_end_time = 0.0 # Keep track of the end time of the previous word
|
| 275 |
+
|
| 276 |
+
for i, word_entry in enumerate(words_data):
|
| 277 |
+
# Get original start and end times
|
| 278 |
+
start_seconds = word_entry['start']
|
| 279 |
+
end_seconds = word_entry['end']
|
| 280 |
+
|
| 281 |
+
# --- Overlap Prevention Logic ---
|
| 282 |
+
# Ensure the start time is not before the previous word ended
|
| 283 |
+
start_seconds = max(start_seconds, previous_end_time)
|
| 284 |
+
|
| 285 |
+
# Ensure the end time is not before the start time (can happen with adjustments)
|
| 286 |
+
# And add a tiny minimum duration (e.g., 50ms) if start and end are identical,
|
| 287 |
+
# otherwise the subtitle might flash too quickly or be ignored by players.
|
| 288 |
+
min_duration = 0.050 # 50 milliseconds
|
| 289 |
+
if end_seconds <= start_seconds:
|
| 290 |
+
end_seconds = start_seconds + min_duration
|
| 291 |
+
# --- End of Overlap Prevention ---
|
| 292 |
+
|
| 293 |
+
# Format the potentially adjusted times
|
| 294 |
+
start_time_fmt = format_time(start_seconds)
|
| 295 |
+
end_time_fmt = format_time(end_seconds)
|
| 296 |
+
text = word_entry['word']
|
| 297 |
+
srt_id = starting_id + i + 1
|
| 298 |
+
|
| 299 |
+
srt_line = f"{srt_id}\n{start_time_fmt} --> {end_time_fmt}\n{text}\n"
|
| 300 |
+
srt_lines.append(srt_line)
|
| 301 |
+
|
| 302 |
+
# Update previous_end_time for the next iteration using the *adjusted* end time
|
| 303 |
+
previous_end_time = end_seconds
|
| 304 |
+
|
| 305 |
+
return '\n'.join(srt_lines)
|
| 306 |
+
|
| 307 |
+
def generate_subtitles(input_file, prompt, timestamp_granularities_str, language, auto_detect_language, model, include_video, font_selection, font_file, font_color, font_size, outline_thickness, outline_color):
|
| 308 |
|
| 309 |
input_file_path = input_file
|
| 310 |
|
| 311 |
processed_path, split_status = check_file(input_file_path)
|
| 312 |
+
full_srt_content = "" # Used for accumulating SRT content string for split files
|
| 313 |
+
srt_chunks_paths = [] # Used to store paths of individual SRT chunk files for merging
|
| 314 |
+
video_chunks = [] # Used to store paths of video chunks with embedded subs
|
| 315 |
+
total_duration = 0 # Cumulative duration for timestamp adjustment in split files
|
| 316 |
+
srt_entry_offset = 0 # Cumulative SRT entry count (words or segments) for ID adjustment
|
| 317 |
+
|
| 318 |
+
# transforms the gradio dropdown choice str to a python list needed for the groq api
|
| 319 |
+
timestamp_granularities_list = [gran.strip() for gran in timestamp_granularities_str.split(',') if gran.strip()]
|
| 320 |
+
|
| 321 |
+
# Determine primary granularity for logic (prefer word if both specified, else segment)
|
| 322 |
+
primary_granularity = "word" if "word" in timestamp_granularities_list else "segment"
|
| 323 |
|
| 324 |
+
# handling splitted files or single ones
|
| 325 |
if split_status == "split":
|
|
|
|
|
|
|
| 326 |
for i, chunk_path in enumerate(processed_path):
|
| 327 |
+
chunk_srt_content = "" # SRT content for the current chunk
|
| 328 |
+
temp_srt_path = f"{os.path.splitext(chunk_path)[0]}.srt" # Path for this chunk's SRT file
|
| 329 |
+
|
| 330 |
try:
|
| 331 |
+
gr.Info(f"Processing chunk {i+1}/{len(processed_path)}...")
|
| 332 |
with open(chunk_path, "rb") as file:
|
| 333 |
transcription_json_response = client.audio.transcriptions.create(
|
| 334 |
file=(os.path.basename(chunk_path), file.read()),
|
| 335 |
model=model,
|
| 336 |
prompt=prompt,
|
| 337 |
response_format="verbose_json",
|
| 338 |
+
timestamp_granularities=timestamp_granularities_list,
|
| 339 |
language=None if auto_detect_language else language,
|
| 340 |
temperature=0.0,
|
| 341 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 342 |
|
| 343 |
+
if primary_granularity == "word":
|
| 344 |
+
word_data = transcription_json_response.words
|
| 345 |
+
if word_data:
|
| 346 |
+
# Adjust timestamps BEFORE generating SRT
|
| 347 |
+
adjusted_word_data = []
|
| 348 |
+
for entry in word_data:
|
| 349 |
+
adjusted_entry = entry.copy()
|
| 350 |
+
adjusted_entry['start'] += total_duration
|
| 351 |
+
adjusted_entry['end'] += total_duration
|
| 352 |
+
adjusted_word_data.append(adjusted_entry)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 353 |
|
| 354 |
+
# Generate SRT using adjusted data and current offset
|
| 355 |
+
chunk_srt_content = words_json_to_srt(adjusted_word_data, srt_entry_offset)
|
| 356 |
+
|
| 357 |
+
# Update offsets for the *next* chunk
|
| 358 |
+
total_duration = adjusted_word_data[-1]['end'] # Use adjusted end time
|
| 359 |
+
srt_entry_offset += len(word_data) # Increment by number of words in this chunk
|
| 360 |
+
else:
|
| 361 |
+
gr.Warning(f"API returned no word timestamps for chunk {i+1}.")
|
| 362 |
+
|
| 363 |
+
elif primary_granularity == "segment":
|
| 364 |
+
segment_data = transcription_json_response.segments
|
| 365 |
+
if segment_data:
|
| 366 |
+
# Adjust timestamps and IDs BEFORE generating SRT
|
| 367 |
+
adjusted_segment_data = []
|
| 368 |
+
max_original_id = -1
|
| 369 |
+
for entry in segment_data:
|
| 370 |
+
adjusted_entry = entry.copy()
|
| 371 |
+
adjusted_entry['start'] += total_duration
|
| 372 |
+
adjusted_entry['end'] += total_duration
|
| 373 |
+
max_original_id = max(max_original_id, adjusted_entry['id']) # Track max original ID for offset calc
|
| 374 |
+
adjusted_entry['id'] += srt_entry_offset # Adjust ID for SRT generation
|
| 375 |
+
adjusted_segment_data.append(adjusted_entry)
|
| 376 |
+
|
| 377 |
+
# Generate SRT using adjusted data
|
| 378 |
+
chunk_srt_content = json_to_srt(adjusted_segment_data) # json_to_srt uses the 'id' field directly
|
| 379 |
+
|
| 380 |
+
# Update offsets for the *next* chunk
|
| 381 |
+
total_duration = adjusted_segment_data[-1]['end'] # Use adjusted end time
|
| 382 |
+
srt_entry_offset += (max_original_id + 1) # Increment by number of segments in this chunk (based on original IDs)
|
| 383 |
+
else:
|
| 384 |
+
gr.Warning(f"API returned no segment timestamps for chunk {i+1}.")
|
| 385 |
+
else:
|
| 386 |
+
# This case should ideally not be reached due to dropdown default/logic
|
| 387 |
+
gr.Warning(f"Invalid timestamp granularity for chunk {i+1}. Skipping SRT generation for this chunk.")
|
| 388 |
+
|
| 389 |
+
# Write and store path for this chunk's SRT file if content exists
|
| 390 |
+
if chunk_srt_content:
|
| 391 |
+
with open(temp_srt_path, "w", encoding="utf-8") as temp_srt_file:
|
| 392 |
+
temp_srt_file.write(chunk_srt_content)
|
| 393 |
+
srt_chunks_paths.append(temp_srt_path)
|
| 394 |
+
full_srt_content += chunk_srt_content # Append to the full content string as well
|
| 395 |
+
|
| 396 |
+
# Video embedding for the chunk
|
| 397 |
+
if include_video and input_file_path.lower().endswith((".mp4", ".webm")):
|
| 398 |
+
try:
|
| 399 |
+
output_video_chunk_path = chunk_path.replace(os.path.splitext(chunk_path)[1], "_with_subs" + os.path.splitext(chunk_path)[1])
|
| 400 |
+
# Handle font selection
|
| 401 |
+
font_name = None
|
| 402 |
+
font_dir = None
|
| 403 |
+
if font_selection == "Custom Font File" and font_file:
|
| 404 |
+
font_name = os.path.splitext(os.path.basename(font_file.name))[0]
|
| 405 |
+
font_dir = os.path.dirname(font_file.name)
|
| 406 |
+
elif font_selection == "Custom Font File" and not font_file:
|
| 407 |
+
gr.Warning(f"Custom Font File selected but none uploaded. Using default font for chunk {i+1}.")
|
| 408 |
+
|
| 409 |
+
# FFmpeg command for the chunk
|
| 410 |
+
subprocess.run(
|
| 411 |
+
[
|
| 412 |
+
"ffmpeg", "-y", "-i", chunk_path,
|
| 413 |
+
"-vf", f"subtitles={temp_srt_path}:fontsdir={font_dir}:force_style='FontName={font_name},Fontsize={int(font_size)},PrimaryColour=&H{font_color[1:]}&,OutlineColour=&H{outline_color[1:]}&,BorderStyle={int(outline_thickness)},Outline=1'",
|
| 414 |
+
"-preset", "fast", output_video_chunk_path,
|
| 415 |
+
], check=True,
|
| 416 |
+
)
|
| 417 |
+
video_chunks.append(output_video_chunk_path)
|
| 418 |
+
except subprocess.CalledProcessError as e:
|
| 419 |
+
# Warn but continue processing other chunks
|
| 420 |
+
gr.Warning(f"Error adding subtitles to video chunk {i+1}: {e}. Skipping video for this chunk.")
|
| 421 |
+
except Exception as e: # Catch other potential errors during font handling etc.
|
| 422 |
+
gr.Warning(f"Error preparing subtitle style for video chunk {i+1}: {e}. Skipping video for this chunk.")
|
| 423 |
+
|
| 424 |
+
elif include_video and i == 0: # Show warning only once for non-video input
|
| 425 |
+
gr.Warning(f"Include Video checked, but input isn't MP4/WebM. Only SRT will be generated.", duration=15)
|
| 426 |
+
|
| 427 |
+
|
| 428 |
except groq.AuthenticationError as e:
|
| 429 |
+
handle_groq_error(e, model) # This will raise gr.Error and stop execution
|
| 430 |
except groq.RateLimitError as e:
|
| 431 |
+
handle_groq_error(e, model) # This will raise gr.Error and stop execution
|
| 432 |
+
except Exception as e:
|
| 433 |
+
gr.Warning(f"Error processing chunk {i+1}: {e}. Skipping this chunk.")
|
| 434 |
+
# Remove potentially incomplete SRT for this chunk if it exists
|
| 435 |
+
if os.path.exists(temp_srt_path):
|
| 436 |
+
try: os.remove(temp_srt_path)
|
| 437 |
+
except: pass
|
| 438 |
+
continue # Move to the next chunk
|
| 439 |
+
|
| 440 |
+
# After processing all chunks
|
| 441 |
+
final_srt_path = None
|
| 442 |
+
final_video_path = None
|
| 443 |
+
|
| 444 |
+
# Merge SRT chunks if any were created
|
| 445 |
+
if srt_chunks_paths:
|
| 446 |
+
final_srt_path = os.path.splitext(input_file_path)[0] + "_final.srt"
|
| 447 |
+
gr.Info("Merging SRT chunks...")
|
| 448 |
+
with open(final_srt_path, 'w', encoding="utf-8") as outfile:
|
| 449 |
+
# Use the full_srt_content string which ensures correct order and content
|
| 450 |
+
outfile.write(full_srt_content)
|
| 451 |
+
# Clean up individual srt chunks paths
|
| 452 |
+
for srt_chunk_file in srt_chunks_paths:
|
| 453 |
+
try: os.remove(srt_chunk_file)
|
| 454 |
+
except: pass
|
| 455 |
+
# Clean up intermediate audio chunks used for transcription
|
| 456 |
+
for chunk in processed_path:
|
| 457 |
+
try: os.remove(chunk)
|
| 458 |
+
except: pass
|
| 459 |
+
else:
|
| 460 |
+
gr.Warning("No SRT content was generated from any chunk.")
|
| 461 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 462 |
|
| 463 |
+
# Merge video chunks if any were created
|
| 464 |
if video_chunks:
|
| 465 |
+
# Check if number of video chunks matches expected number based on successful SRT generation
|
| 466 |
+
if len(video_chunks) != len(srt_chunks_paths):
|
| 467 |
+
gr.Warning("Mismatch between successful SRT chunks and video chunks created. Video merge might be incomplete.")
|
| 468 |
+
|
| 469 |
+
final_video_path = os.path.splitext(input_file_path)[0] + '_merged_video_with_subs.mp4' # More descriptive name
|
| 470 |
+
gr.Info("Merging video chunks...")
|
| 471 |
+
try:
|
| 472 |
+
merge_audio(video_chunks, final_video_path) # Re-using merge_audio logic for video files
|
| 473 |
+
# video_chunks are removed inside merge_audio if successful
|
| 474 |
+
except Exception as e:
|
| 475 |
+
gr.Error(f"Failed to merge video chunks: {e}")
|
| 476 |
+
final_video_path = None # Indicate failure
|
| 477 |
+
|
| 478 |
+
return final_srt_path, final_video_path
|
| 479 |
|
| 480 |
else: # Single file processing (no splitting)
|
| 481 |
+
final_srt_path = None
|
| 482 |
+
final_video_path = None
|
| 483 |
+
temp_srt_path = os.path.splitext(processed_path)[0] + ".srt" # Use processed_path for naming
|
| 484 |
+
|
| 485 |
try:
|
| 486 |
+
gr.Info("Processing file...")
|
| 487 |
with open(processed_path, "rb") as file:
|
| 488 |
transcription_json_response = client.audio.transcriptions.create(
|
| 489 |
file=(os.path.basename(processed_path), file.read()),
|
| 490 |
model=model,
|
| 491 |
prompt=prompt,
|
| 492 |
response_format="verbose_json",
|
| 493 |
+
timestamp_granularities=timestamp_granularities_list,
|
| 494 |
language=None if auto_detect_language else language,
|
| 495 |
temperature=0.0,
|
| 496 |
)
|
|
|
|
| 497 |
|
| 498 |
+
srt_content = "" # Initialize
|
|
|
|
|
|
|
|
|
|
| 499 |
|
| 500 |
+
if primary_granularity == "word":
|
| 501 |
+
word_data = transcription_json_response.words
|
| 502 |
+
if word_data:
|
| 503 |
+
srt_content = words_json_to_srt(word_data, 0) # Start IDs from 0
|
| 504 |
+
else:
|
| 505 |
+
gr.Warning("API returned no word timestamps.")
|
| 506 |
+
elif primary_granularity == "segment":
|
| 507 |
+
segment_data = transcription_json_response.segments
|
| 508 |
+
if segment_data:
|
| 509 |
+
# No need to adjust IDs/timestamps for single file
|
| 510 |
+
srt_content = json_to_srt(segment_data)
|
| 511 |
+
else:
|
| 512 |
+
gr.Warning("API returned no segment timestamps.")
|
| 513 |
+
else:
|
| 514 |
+
# Should not happen
|
| 515 |
+
gr.Warning("Invalid timestamp granularity selected. Skipping SRT generation.")
|
| 516 |
+
|
| 517 |
+
# Write SRT file if content exists
|
| 518 |
+
if srt_content:
|
| 519 |
+
with open(temp_srt_path, "w", encoding="utf-8") as temp_srt_file:
|
| 520 |
+
temp_srt_file.write(srt_content)
|
| 521 |
+
final_srt_path = temp_srt_path # Set the final path
|
| 522 |
+
|
| 523 |
+
# Video embedding logic
|
| 524 |
+
if include_video and input_file_path.lower().endswith((".mp4", ".webm")):
|
| 525 |
+
try:
|
| 526 |
+
output_video_path = processed_path.replace(
|
| 527 |
+
os.path.splitext(processed_path)[1], "_with_subs" + os.path.splitext(processed_path)[1]
|
| 528 |
+
)
|
| 529 |
+
# Handle font selection
|
| 530 |
+
font_name = None
|
| 531 |
+
font_dir = None
|
| 532 |
+
if font_selection == "Custom Font File" and font_file:
|
| 533 |
+
font_name = os.path.splitext(os.path.basename(font_file.name))[0]
|
| 534 |
+
font_dir = os.path.dirname(font_file.name)
|
| 535 |
+
elif font_selection == "Custom Font File" and not font_file:
|
| 536 |
+
gr.Warning(f"Custom Font File selected but none uploaded. Using default font.")
|
| 537 |
+
|
| 538 |
+
# FFmpeg command
|
| 539 |
+
gr.Info("Adding subtitles to video...")
|
| 540 |
+
subprocess.run(
|
| 541 |
+
[
|
| 542 |
+
"ffmpeg", "-y", "-i", processed_path, # Use processed_path as input
|
| 543 |
+
"-vf", f"subtitles={temp_srt_path}:fontsdir={font_dir}:force_style='FontName={font_name},Fontsize={int(font_size)},PrimaryColour=&H{font_color[1:]}&,OutlineColour=&H{outline_color[1:]}&,BorderStyle={int(outline_thickness)},Outline=1'",
|
| 544 |
+
"-preset", "fast", output_video_path,
|
| 545 |
+
], check=True,
|
| 546 |
+
)
|
| 547 |
+
final_video_path = output_video_path
|
| 548 |
+
except subprocess.CalledProcessError as e:
|
| 549 |
+
gr.Error(f"Error during subtitle addition: {e}")
|
| 550 |
+
# Keep SRT file, but no video output
|
| 551 |
+
final_video_path = None
|
| 552 |
+
except Exception as e:
|
| 553 |
+
gr.Error(f"Error preparing subtitle style for video: {e}")
|
| 554 |
+
final_video_path = None
|
| 555 |
+
|
| 556 |
+
elif include_video:
|
| 557 |
+
# Warning for non-video input shown once
|
| 558 |
+
gr.Warning(f"Include Video checked, but input isn't MP4/WebM. Only SRT will be generated.", duration=15)
|
| 559 |
+
|
| 560 |
+
# Clean up downsampled file if it was created and different from original input
|
| 561 |
+
if processed_path != input_file_path and os.path.exists(processed_path):
|
| 562 |
+
try: os.remove(processed_path)
|
| 563 |
+
except: pass
|
| 564 |
+
|
| 565 |
+
return final_srt_path, final_video_path # Return paths (video might be None)
|
| 566 |
|
| 567 |
+
else: # No SRT content generated
|
| 568 |
+
gr.Warning("No SRT content could be generated.")
|
| 569 |
+
# Clean up downsampled file if created
|
| 570 |
+
if processed_path != input_file_path and os.path.exists(processed_path):
|
| 571 |
+
try: os.remove(processed_path)
|
| 572 |
+
except: pass
|
| 573 |
+
return None, None # Return None for both outputs
|
| 574 |
+
|
| 575 |
except groq.AuthenticationError as e:
|
| 576 |
handle_groq_error(e, model)
|
| 577 |
except groq.RateLimitError as e:
|
| 578 |
handle_groq_error(e, model)
|
| 579 |
+
except Exception as e: # Catch any other error during single file processing
|
| 580 |
+
# Clean up downsampled file if created
|
| 581 |
+
if processed_path != input_file_path and os.path.exists(processed_path):
|
| 582 |
+
try: os.remove(processed_path)
|
| 583 |
+
except: pass
|
| 584 |
+
# Clean up potentially created empty SRT
|
| 585 |
+
if os.path.exists(temp_srt_path):
|
| 586 |
+
try: os.remove(temp_srt_path)
|
| 587 |
+
except: pass
|
| 588 |
+
raise gr.Error(f"An unexpected error occurred: {e}")
|
| 589 |
+
|
| 590 |
|
| 591 |
theme = gr.themes.Soft(
|
| 592 |
primary_hue="sky",
|
|
|
|
| 638 |
# Model and options
|
| 639 |
model_choice_subtitles = gr.Dropdown(choices=["whisper-large-v3", "whisper-large-v3-turbo", "distil-whisper-large-v3-en"], value="whisper-large-v3-turbo", label="Audio Speech Recogition (ASR) Model", info="'whisper-large-v3' = Multilingual high quality, 'whisper-large-v3-turbo' = Multilingual fast with minimal impact on quality, good balance, 'distil-whisper-large-v3-en' = English only, fastest with also slight impact on quality")
|
| 640 |
transcribe_prompt_subtitles = gr.Textbox(label="Prompt (Optional)", info="Specify any context or spelling corrections.")
|
| 641 |
+
timestamp_granularities_str = gr.Dropdown(choices=["word", "segment"], value="word", label="Timestamp Granularities", info="The level of detail of time measurement in the timestamps.")
|
| 642 |
with gr.Row():
|
| 643 |
language_subtitles = gr.Dropdown(choices=[(lang, code) for lang, code in LANGUAGE_CODES.items()], value="en", label="Language")
|
| 644 |
auto_detect_language_subtitles = gr.Checkbox(label="Auto Detect Language")
|
|
|
|
| 692 |
inputs=[
|
| 693 |
input_file,
|
| 694 |
transcribe_prompt_subtitles,
|
| 695 |
+
timestamp_granularities_str,
|
| 696 |
language_subtitles,
|
| 697 |
auto_detect_language_subtitles,
|
| 698 |
model_choice_subtitles,
|