Spaces:
Runtime error
Runtime error
File size: 1,072 Bytes
6819cba ec665e5 6819cba 6d97bc1 6819cba b56d4a5 813ddfe b56d4a5 813ddfe 01185b8 b56d4a5 813ddfe 62138e5 813ddfe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
from transformers import ViTFeatureExtractor, ViTForImageToText, AutoTokenizer
import torch
from PIL import Image
model = ViTForImageToText.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
feature_extractor = ViTFeatureExtractor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
max_length = 16
num_beams = 4
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
def predict_caption(image_paths):
images = []
for image_path in image_paths:
image = Image.open(image_path)
if image.mode != "RGB":
image = image.convert(mode="RGB")
images.append(image)
pixel_values = feature_extractor(images=images, return_tensors="pt").pixel_values
pixel_values = pixel_values.to(device)
output_ids = model.generate(pixel_values, **gen_kwargs)
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
return preds
|