Nepjune commited on
Commit
62138e5
·
verified ·
1 Parent(s): 1f71e4a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -6
app.py CHANGED
@@ -1,10 +1,10 @@
1
- from transformers import VisionEncoderDecoderModle, ViTImageProcer, Autotokenizer
2
  import torch
3
  from PIL import Image
4
 
5
- model = VisionEncoderDecoderModle.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
6
- feature_external = ViTImageProcer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
7
- tokenizer = Autotokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
8
 
9
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
10
  model.to(device)
@@ -21,11 +21,10 @@ def predict_caption(image_paths):
21
  image = image.convert(mode="RGB")
22
  images.append(image)
23
 
24
- pixel_values = feature_extractor(images=images, return_pixel_values=True).pixel_values
25
  pixel_values = pixel_values.to(device)
26
 
27
  output_ids = model.generate(pixel_values, **gen_kwargs)
28
 
29
  preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
30
  return preds
31
-
 
1
+ from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer
2
  import torch
3
  from PIL import Image
4
 
5
+ model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
6
+ feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
7
+ tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
8
 
9
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
10
  model.to(device)
 
21
  image = image.convert(mode="RGB")
22
  images.append(image)
23
 
24
+ pixel_values = feature_extractor(images=images, return_tensors="pt").pixel_values
25
  pixel_values = pixel_values.to(device)
26
 
27
  output_ids = model.generate(pixel_values, **gen_kwargs)
28
 
29
  preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
30
  return preds