Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,20 +1,14 @@
|
|
1 |
-
from
|
2 |
-
|
3 |
-
import gradio as gr
|
4 |
-
import PIL.Image
|
5 |
-
import spaces
|
6 |
import torch
|
7 |
-
from
|
8 |
|
9 |
-
|
|
|
|
|
10 |
|
11 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
model.to(device)
|
13 |
|
14 |
-
model_id = "Salesforce/blip-image-captioning-large"
|
15 |
-
processor = AutoProcessor.from_pretrained(model_id)
|
16 |
-
model = BlipForConditionalGeneration.from_pretrained(model_id).to(device)
|
17 |
-
|
18 |
max_length = 16
|
19 |
num_beams = 4
|
20 |
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
|
|
|
1 |
+
from transformers import ViTFeatureExtractor, ViTForImageToText, AutoTokenizer
|
|
|
|
|
|
|
|
|
2 |
import torch
|
3 |
+
from PIL import Image
|
4 |
|
5 |
+
model = ViTForImageToText.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
6 |
+
feature_extractor = ViTFeatureExtractor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
8 |
|
9 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
10 |
model.to(device)
|
11 |
|
|
|
|
|
|
|
|
|
12 |
max_length = 16
|
13 |
num_beams = 4
|
14 |
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
|