File size: 8,333 Bytes
077fc91
5c0b534
7598e8a
077fc91
c93bd34
077fc91
01bc85d
769894a
5c0b534
077fc91
 
1689431
640f5b4
01bc85d
077fc91
 
d4233b7
077fc91
 
 
 
 
 
 
 
 
d46e73c
077fc91
 
f07135c
077fc91
4d6f971
185ceb1
640f5b4
077fc91
 
 
daeee36
0457b5c
 
 
daeee36
 
077fc91
c02210d
43dcd18
2f5a3a2
43dcd18
95eb778
4d6f971
 
 
60edd6a
9e6e225
4d6f971
a5fefd2
4d6f971
6046fb8
 
 
 
60edd6a
0579ca3
706546d
0b87dc6
0579ca3
32a0a1c
 
0579ca3
95eb778
60edd6a
 
 
 
4f4f67b
60edd6a
077fc91
640f5b4
d4233b7
32a0a1c
1689431
2f5a3a2
c93bd34
 
 
2f5a3a2
95eb778
077fc91
0579ca3
 
 
077fc91
640f5b4
8728327
077fc91
 
fe0db59
 
9e6e225
fe0db59
077fc91
 
dcd8315
fe0db59
711582a
613f332
185ceb1
711582a
9e6e225
f76bf44
640f5b4
3756abb
0a54901
9dd1448
4d6f971
0a54901
4d6f971
c1a5086
 
0a54901
 
9503ae0
0a54901
4d6f971
 
185ceb1
9dd1448
 
 
 
 
 
 
 
 
 
4d6f971
 
 
0a54901
077fc91
c02210d
 
 
640f5b4
39f3339
c02210d
640f5b4
 
c02210d
077fc91
b3873d0
0579ca3
d4233b7
7299967
d46e73c
1c4f487
 
077fc91
5a6d6d4
 
7544b79
2a1828c
 
aed7a48
2a1828c
 
5a6d6d4
 
 
d7bd88e
 
 
c810b3c
ae29f3e
 
c69e375
3756abb
d7bd88e
077fc91
 
 
ba4f873
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import os
import gradio as gr
import numpy as np
import cv2 
from PIL import Image, ImageOps
import torch
from inference import SegmentPredictor, DepthPredictor
from utils import generate_PCL, PCL3, point_cloud



sam = SegmentPredictor()
sam_cpu = SegmentPredictor(device='cpu')
dpt = DepthPredictor()
red = (255,0,0)
blue = (0,0,255)
annos = []


block = gr.Blocks()
with block:
    # States
    def point_coords_empty():
        return []
    def point_labels_empty():
        return []
    image_edit_trigger = gr.State(True)
    point_coords = gr.State(point_coords_empty)
    point_labels = gr.State(point_labels_empty)
    masks = gr.State([])
    cutout_idx = gr.State(set())
    pred_masks = gr.State([])
    prompt_masks = gr.State([])
    embedding = gr.State()

    # UI
    with gr.Column():
        gr.Markdown(
            '''# Segment Anything Model (SAM)
            ## a new AI model from Meta AI that can "cut out" any object, in any image, with a single click πŸš€
            SAM is a promptable segmentation system with zero-shot generalization to unfamiliar objects and images, without the need for additional training. [**Official Project**](https://segment-anything.com/) [**Code**](https://github.com/facebookresearch/segment-anything).
            '''
        )
        with gr.Row():
            with gr.Column():
                with gr.Tab("Upload Image"):
                    upload_image = gr.Image(label='Input', type='pil', tool=None) # mirror_webcam = False
                with gr.Tab("Webcam"):
                    input_image = gr.Image(label='Input', type='pil', tool=None, source="webcam") # mirror_webcam = False
                with gr.Row():
                    sam_encode_btn = gr.Button('Encode', variant='primary')
                    sam_sgmt_everything_btn = gr.Button('Segment Everything!', variant = 'primary')
                #sam_encode_status = gr.Label('Not encoded yet')
        with gr.Row():
            prompt_image = gr.Image(label='Segments')
            #prompt_lbl_image = gr.AnnotatedImage(label='Segment Labels')
            lbl_image = gr.AnnotatedImage(label='Everything')
        with gr.Row():
            point_label_radio = gr.Radio(label='Point Label', choices=[1,0], value=1)
            text = gr.Textbox(label='Mask Name')
            reset_btn = gr.Button('New Mask')
        selected_masks_image = gr.AnnotatedImage(label='Selected Masks')
        with gr.Row():
            with gr.Column():
                pcl_figure = gr.Model3D(label="3-D Reconstruction", clear_color=[1.0, 1.0, 1.0, 1.0])
                with gr.Row():
                    max_depth = gr.Slider(minimum=0, maximum=10, step=0.01, default=1, label='Max Depth')
                    min_depth = gr.Slider(minimum=0, maximum=10, step=0.01, default=0.1, label='Min Depth')
                    n_samples = gr.Slider(minimum=1e3, maximum=1e6, step=1e3, default=1e3, label='Number of Samples')
                    cube_size = gr.Slider(minimum=0.00001, maximum=0.001, step=0.000001, default=0.00001, label='Cube size')
                    depth_reconstruction_btn = gr.Button('Depth Reconstruction', variant = 'primary')
       


                sam_decode_btn = gr.Button('Predict using points!', variant = 'primary')
                
    # components
    components = {point_coords, point_labels, image_edit_trigger, masks, cutout_idx, input_image, embedding,
                  point_label_radio, text, reset_btn, sam_sgmt_everything_btn,
                  sam_decode_btn, depth_reconstruction_btn, prompt_image, lbl_image, n_samples, max_depth, min_depth, cube_size, selected_masks_image}
    
    def on_upload_image(input_image, upload_image):
        ## Mirror because gradio.image webcam has mirror = True
        upload_image_mirror  = ImageOps.mirror(upload_image)
        return [upload_image_mirror, upload_image]
    upload_image.upload(on_upload_image, [input_image, upload_image], [input_image, upload_image])

    # event - init coords
    def on_reset_btn_click(input_image):
        return input_image, point_coords_empty(), point_labels_empty(), None, []
    reset_btn.click(on_reset_btn_click, [input_image], [input_image, point_coords, point_labels], queue=False)

    def on_prompt_image_select(input_image, prompt_image, point_coords, point_labels, point_label_radio, text, pred_masks, embedding, evt: gr.SelectData):
        sam_cpu.dummy_encode(input_image)
        x, y = evt.index
        color = red if point_label_radio == 0 else blue
        if prompt_image is None:
            prompt_image = np.array(input_image.copy())

        cv2.circle(prompt_image, (x, y), 5, color, -1)
        point_coords.append([x,y])
        point_labels.append(point_label_radio)
        sam_masks = sam_cpu.cond_pred(pts=np.array(point_coords), lbls=np.array(point_labels), embedding=embedding)
        return  [ prompt_image,
                  (input_image, sam_masks),
                  point_coords,
                  point_labels,
                  sam_masks ]
        
    prompt_image.select(on_prompt_image_select,
                       [input_image, prompt_image, point_coords, point_labels, point_label_radio, text, pred_masks, embedding],
                       [prompt_image, lbl_image, point_coords, point_labels, pred_masks], queue=True)
    
    
    def on_everything_image_select(input_image, pred_masks, masks, text, evt: gr.SelectData):
        i = evt.index
        mask = pred_masks[i][0]
        print(mask)
        print(type(mask))
        masks.append((mask, text))
        anno = (input_image, masks) 
        return  [masks, anno]
        
    lbl_image.select(on_everything_image_select,
                       [input_image, pred_masks, masks, text],
                       [masks, selected_masks_image], queue=False)
    
    def on_selected_masks_image_select(input_image, masks, evt: gr.SelectData):
        i = evt.index
        del masks[i]
        anno = (input_image, masks) 
        return  [masks, anno]
    
    selected_masks_image.select(on_selected_masks_image_select,
                                [input_image, masks],
                                [masks, selected_masks_image], queue=False)
    #prompt_lbl_image.select(on_everything_image_select,
    #                   [input_image, prompt_masks, masks, text],
    #                   [masks, selected_masks_image], queue=False)


    def on_click_sam_encode_btn(inputs):
        print("encoding")
        # encode image on click
        embedding = sam.encode(inputs[input_image]).cpu()
        sam_cpu.dummy_encode(inputs[input_image])
        print("encoding done")
        return [inputs[input_image], embedding]
    sam_encode_btn.click(on_click_sam_encode_btn, components, [prompt_image, embedding], queue=False)

    def on_click_sam_dencode_btn(inputs):
        print("inferencing")
        image = inputs[input_image]
        generated_mask, _, _ = sam.cond_pred(pts=np.array(inputs[point_coords]), lbls=np.array(inputs[point_labels]))
        inputs[masks].append((generated_mask, inputs[text]))
        print(inputs[masks][0])
        return {prompt_image: (image, inputs[masks])}
    sam_decode_btn.click(on_click_sam_dencode_btn, components, [prompt_image, masks, cutout_idx], queue=True)

    def on_depth_reconstruction_btn_click(inputs):
        print("depth reconstruction")
        path = dpt.generate_obj_rgb(image=inputs[input_image],
                                      cube_size=inputs[cube_size],
                                      n_samples=inputs[n_samples],
                                      #masks=inputs[masks],
                                      min_depth=inputs[min_depth],
                                      max_depth=inputs[max_depth]) #
        return {pcl_figure: path}
    depth_reconstruction_btn.click(on_depth_reconstruction_btn_click, components, [pcl_figure], queue=False)

    def on_sam_sgmt_everything_btn_click(inputs):
        print("segmenting everything")
        image = inputs[input_image]
        sam_masks = sam.segment_everything(image)
        print(image)
        print(sam_masks)
        return [(image, sam_masks), sam_masks]
    sam_sgmt_everything_btn.click(on_sam_sgmt_everything_btn_click, components, [lbl_image, pred_masks], queue=True)


if __name__ == '__main__':
    block.queue()
    block.launch()