jens commited on
Commit
769894a
·
1 Parent(s): 7166941
Files changed (2) hide show
  1. app.py +2 -2
  2. utils.py +3 -1
app.py CHANGED
@@ -5,7 +5,7 @@ import cv2
5
  from PIL import Image
6
  import torch
7
  from inference import SegmentPredictor
8
- from utils import generate_PCL, PCL3
9
 
10
 
11
 
@@ -52,7 +52,7 @@ with block:
52
  print("depth reconstruction")
53
  image = inputs[raw_image]
54
  # depth reconstruction
55
- fig = PCL3(image)
56
  return {pcl_figure: fig}
57
 
58
  depth_reconstruction_btn.click(on_depth_reconstruction_btn_click, components, [pcl_figure], queue=False)
 
5
  from PIL import Image
6
  import torch
7
  from inference import SegmentPredictor
8
+ from utils import generate_PCL, PCL3, point_cloud
9
 
10
 
11
 
 
52
  print("depth reconstruction")
53
  image = inputs[raw_image]
54
  # depth reconstruction
55
+ fig = point_cloud(image)
56
  return {pcl_figure: fig}
57
 
58
  depth_reconstruction_btn.click(on_depth_reconstruction_btn_click, components, [pcl_figure], queue=False)
utils.py CHANGED
@@ -107,8 +107,10 @@ def point_cloud(rgb_image, depth_image):
107
  data = {'x': points[:, 0], 'y': points[:, 1], 'z': points[:, 2],
108
  'red': colors[:, 0], 'green': colors[:, 1], 'blue': colors[:, 2]}
109
  df = pd.DataFrame(data)
 
 
110
  # Step 6: Create a 3D scatter plot using Plotly Express
111
- fig = px.scatter_3d(df, x='x', y='y', z='z', color='red', size_max=0.1)
112
 
113
  return fig
114
 
 
107
  data = {'x': points[:, 0], 'y': points[:, 1], 'z': points[:, 2],
108
  'red': colors[:, 0], 'green': colors[:, 1], 'blue': colors[:, 2]}
109
  df = pd.DataFrame(data)
110
+ size = np.zeros(len(df))
111
+ size[:] = 0.01
112
  # Step 6: Create a 3D scatter plot using Plotly Express
113
+ fig = px.scatter_3d(df, x='x', y='y', z='z', color='red', size=size)
114
 
115
  return fig
116