File size: 881 Bytes
5e69d3c
d13afd7
5e69d3c
d13afd7
5e69d3c
 
 
d13afd7
5e69d3c
 
7b475df
d13afd7
5e69d3c
d13afd7
5e69d3c
d13afd7
5e69d3c
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import gradio as gr

# Load the model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("dalle-mini/dalle-mega")
model = AutoModelForCausalLM.from_pretrained("dalle-mini/dalle-mega")

# Define the function for Gradio interface
def generate_image(prompt):
    inputs = tokenizer(prompt, return_tensors="pt")
    
    # Generate image (or output) using the model
    with torch.no_grad():
        outputs = model.generate(**inputs)
    
    # Convert output to a format suitable for Gradio
    # This part may need to be adapted based on actual output format
    return outputs

# Set up Gradio interface
iface = gr.Interface(
    fn=generate_image,
    inputs=gr.Textbox(label="Enter prompt"),
    outputs=gr.Image(type="pil", label="Generated Image"),
    live=True
)

# Launch the app
iface.launch()