Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import pymongo | |
from sentence_transformers import SentenceTransformer | |
import numpy as np | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
import pickle | |
import os | |
from datetime import datetime | |
# MongoDB Connection | |
MONGO_URI = "mongodb://muhammadbinimran1001:[email protected]:27017,dsm-shard-00-01.inrzs.mongodb.net:27017,dsm-shard-00-02.inrzs.mongodb.net:27017/?ssl=true&replicaSet=atlas-nbg4er-shard-0&authSource=admin&retryWrites=true&w=majority" | |
client = pymongo.MongoClient(MONGO_URI) | |
db = client['test'] | |
users_collection = db['users'] | |
jobs_collection = db['jobs'] | |
courses_collection = db['courses'] | |
# Load Datasets | |
def load_data(): | |
questions_df = pd.read_csv("Generated_Skill-Based_Questions.csv") | |
jobs_df = pd.read_csv("Updated_Job_Posting_Dataset.csv") | |
courses_df = pd.read_csv("coursera_course_dataset_v2_no_null.csv") | |
return questions_df, jobs_df, courses_df | |
questions_df, jobs_df, courses_df = load_data() | |
# Load or Initialize Model | |
def load_model(): | |
return SentenceTransformer('all-MiniLM-L6-v2') | |
model = load_model() | |
tfidf_vectorizer = TfidfVectorizer(stop_words='english') | |
# Skill Extraction and Question Generation | |
def get_user_skills(user_id): | |
user = users_collection.find_one({"_id": user_id}) | |
return user.get("skills", []) if user else [] | |
def get_questions_for_skills(skills): | |
questions = [] | |
for skill in skills: | |
skill_questions = questions_df[questions_df['Skill'] == skill].sample(1) | |
if not skill_questions.empty: | |
questions.append(skill_questions.iloc[0]) | |
return pd.DataFrame(questions) if questions else None | |
# Answer Evaluation | |
def evaluate_answer(user_answer, expected_answer): | |
user_embedding = model.encode([user_answer], convert_to_tensor=True)[0] | |
expected_embedding = model.encode([expected_answer], convert_to_tensor=True)[0] | |
score = util.pytorch_cos_sim(user_embedding, expected_embedding).item() * 100 | |
return max(0, round(score, 2)) | |
# Recommendation Logic | |
def recommend_courses(skills, user_level): | |
skill_indices = [questions_df.index[questions_df['Skill'] == skill].tolist()[0] for skill in skills if skill in questions_df['Skill'].values] | |
if not skill_indices: | |
return [] | |
course_skills = courses_df['skills'].fillna("").tolist() | |
course_embeddings = model.encode(course_skills, convert_to_tensor=True) | |
skill_embeddings = model.encode(skills, convert_to_tensor=True) | |
similarities = util.pytorch_cos_sim(skill_embeddings, course_embeddings).cpu().numpy() | |
total_scores = 0.6 * np.max(similarities, axis=0) | |
idx = np.argsort(-total_scores)[:3] | |
return courses_df.iloc[idx][['course_title', 'Organization']].values.tolist() | |
def recommend_jobs(skills, user_level): | |
skill_indices = [questions_df.index[questions_df['Skill'] == skill].tolist()[0] for skill in skills if skill in questions_df['Skill'].values] | |
if not skill_indices: | |
return [] | |
job_skills = jobs_df['required_skills'].fillna("").tolist() | |
job_embeddings = model.encode(job_skills, convert_to_tensor=True) | |
skill_embeddings = model.encode(skills, convert_to_tensor=True) | |
similarities = util.pytorch_cos_sim(skill_embeddings, job_embeddings).cpu().numpy() | |
total_scores = 0.5 * np.max(similarities, axis=0) | |
idx = np.argsort(-total_scores)[:3] | |
return jobs_df.iloc[idx][['job_title', 'company_name', 'location']].values.tolist() | |
# Streamlit App | |
st.title("Skill Assessment & Recommendation") | |
# Simulate User Signup (for demo, replace with actual auth) | |
if 'user_id' not in st.session_state: | |
st.session_state.user_id = "68233a6b7c0fd8f9d6994e" # Example user ID | |
st.session_state.skills = get_user_skills(st.session_state.user_id) | |
st.session_state.scores = {} | |
if not st.session_state.skills: | |
st.write("No skills found. Please update your profile with skills during signup.") | |
else: | |
st.write(f"Detected Skills: {st.session_state.skills}") | |
if 'questions' not in st.session_state: | |
st.session_state.questions = get_questions_for_skills(st.session_state.skills) | |
if st.session_state.questions is not None: | |
st.session_state.questions = st.session_state.questions.reset_index(drop=True) | |
if st.session_state.questions is not None and not st.session_state.questions.empty: | |
for idx, row in st.session_state.questions.iterrows(): | |
st.subheader(f"Question for {row['Skill']}") | |
user_answer = st.text_area(f"Question: {row['Question']}", key=f"answer_{idx}") | |
if st.button(f"Submit Answer for {row['Skill']}", key=f"submit_{idx}"): | |
score = evaluate_answer(user_answer, row['Answer']) | |
st.session_state.scores[row['Skill']] = score | |
st.success(f"Score for {row['Skill']}: {score}%") | |
if all(skill in st.session_state.scores for skill in st.session_state.skills): | |
st.write("Assessment Complete!") | |
mean_score = np.mean(list(st.session_state.scores.values())) | |
weak_skills = [s for s, score in st.session_state.scores.items() if score < 60] | |
st.write(f"Mean Score: {mean_score:.2f}%") | |
st.write(f"Weak Skills: {weak_skills}") | |
courses = recommend_courses(weak_skills or st.session_state.skills, "Intermediate") | |
jobs = recommend_jobs(st.session_state.skills, "Intermediate") | |
st.write("Recommended Courses:", courses) | |
st.write("Recommended Jobs:", jobs) | |
# Update user score in MongoDB (simplified) | |
users_collection.update_one( | |
{"_id": st.session_state.user_id}, | |
{"$set": {"skills_scores": st.session_state.scores}} | |
) | |
st.session_state.pop('questions', None) | |
else: | |
st.write("No questions available for the detected skills.") | |
# Redirect to Dashboard (simulated) | |
if st.button("Go to Dashboard"): | |
st.write("Redirecting to User Dashboard...") | |
# In a real app, use st.experimental_rerun() or a navigation library |