import streamlit as st import pandas as pd import pymongo from sentence_transformers import SentenceTransformer import numpy as np from sklearn.feature_extraction.text import TfidfVectorizer import pickle import os from datetime import datetime # MongoDB Connection MONGO_URI = "mongodb://muhammadbinimran1001:1BjkVxy6khxEm845@dsm-shard-00-00.inrzs.mongodb.net:27017,dsm-shard-00-01.inrzs.mongodb.net:27017,dsm-shard-00-02.inrzs.mongodb.net:27017/?ssl=true&replicaSet=atlas-nbg4er-shard-0&authSource=admin&retryWrites=true&w=majority" client = pymongo.MongoClient(MONGO_URI) db = client['test'] users_collection = db['users'] jobs_collection = db['jobs'] courses_collection = db['courses'] # Load Datasets @st.cache_data def load_data(): questions_df = pd.read_csv("Generated_Skill-Based_Questions.csv") jobs_df = pd.read_csv("Updated_Job_Posting_Dataset.csv") courses_df = pd.read_csv("coursera_course_dataset_v2_no_null.csv") return questions_df, jobs_df, courses_df questions_df, jobs_df, courses_df = load_data() # Load or Initialize Model @st.cache_resource def load_model(): return SentenceTransformer('all-MiniLM-L6-v2') model = load_model() tfidf_vectorizer = TfidfVectorizer(stop_words='english') # Skill Extraction and Question Generation def get_user_skills(user_id): user = users_collection.find_one({"_id": user_id}) return user.get("skills", []) if user else [] def get_questions_for_skills(skills): questions = [] for skill in skills: skill_questions = questions_df[questions_df['Skill'] == skill].sample(1) if not skill_questions.empty: questions.append(skill_questions.iloc[0]) return pd.DataFrame(questions) if questions else None # Answer Evaluation def evaluate_answer(user_answer, expected_answer): user_embedding = model.encode([user_answer], convert_to_tensor=True)[0] expected_embedding = model.encode([expected_answer], convert_to_tensor=True)[0] score = util.pytorch_cos_sim(user_embedding, expected_embedding).item() * 100 return max(0, round(score, 2)) # Recommendation Logic def recommend_courses(skills, user_level): skill_indices = [questions_df.index[questions_df['Skill'] == skill].tolist()[0] for skill in skills if skill in questions_df['Skill'].values] if not skill_indices: return [] course_skills = courses_df['skills'].fillna("").tolist() course_embeddings = model.encode(course_skills, convert_to_tensor=True) skill_embeddings = model.encode(skills, convert_to_tensor=True) similarities = util.pytorch_cos_sim(skill_embeddings, course_embeddings).cpu().numpy() total_scores = 0.6 * np.max(similarities, axis=0) idx = np.argsort(-total_scores)[:3] return courses_df.iloc[idx][['course_title', 'Organization']].values.tolist() def recommend_jobs(skills, user_level): skill_indices = [questions_df.index[questions_df['Skill'] == skill].tolist()[0] for skill in skills if skill in questions_df['Skill'].values] if not skill_indices: return [] job_skills = jobs_df['required_skills'].fillna("").tolist() job_embeddings = model.encode(job_skills, convert_to_tensor=True) skill_embeddings = model.encode(skills, convert_to_tensor=True) similarities = util.pytorch_cos_sim(skill_embeddings, job_embeddings).cpu().numpy() total_scores = 0.5 * np.max(similarities, axis=0) idx = np.argsort(-total_scores)[:3] return jobs_df.iloc[idx][['job_title', 'company_name', 'location']].values.tolist() # Streamlit App st.title("Skill Assessment & Recommendation") # Simulate User Signup (for demo, replace with actual auth) if 'user_id' not in st.session_state: st.session_state.user_id = "68233a6b7c0fd8f9d6994e" # Example user ID st.session_state.skills = get_user_skills(st.session_state.user_id) st.session_state.scores = {} if not st.session_state.skills: st.write("No skills found. Please update your profile with skills during signup.") else: st.write(f"Detected Skills: {st.session_state.skills}") if 'questions' not in st.session_state: st.session_state.questions = get_questions_for_skills(st.session_state.skills) if st.session_state.questions is not None: st.session_state.questions = st.session_state.questions.reset_index(drop=True) if st.session_state.questions is not None and not st.session_state.questions.empty: for idx, row in st.session_state.questions.iterrows(): st.subheader(f"Question for {row['Skill']}") user_answer = st.text_area(f"Question: {row['Question']}", key=f"answer_{idx}") if st.button(f"Submit Answer for {row['Skill']}", key=f"submit_{idx}"): score = evaluate_answer(user_answer, row['Answer']) st.session_state.scores[row['Skill']] = score st.success(f"Score for {row['Skill']}: {score}%") if all(skill in st.session_state.scores for skill in st.session_state.skills): st.write("Assessment Complete!") mean_score = np.mean(list(st.session_state.scores.values())) weak_skills = [s for s, score in st.session_state.scores.items() if score < 60] st.write(f"Mean Score: {mean_score:.2f}%") st.write(f"Weak Skills: {weak_skills}") courses = recommend_courses(weak_skills or st.session_state.skills, "Intermediate") jobs = recommend_jobs(st.session_state.skills, "Intermediate") st.write("Recommended Courses:", courses) st.write("Recommended Jobs:", jobs) # Update user score in MongoDB (simplified) users_collection.update_one( {"_id": st.session_state.user_id}, {"$set": {"skills_scores": st.session_state.scores}} ) st.session_state.pop('questions', None) else: st.write("No questions available for the detected skills.") # Redirect to Dashboard (simulated) if st.button("Go to Dashboard"): st.write("Redirecting to User Dashboard...") # In a real app, use st.experimental_rerun() or a navigation library